精英家教网 > 高中数学 > 题目详情
从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有C
 
m
n+1
种取法,在这C
 
m
n+1
种取法中,可以分为两类:一类是取出的m个球全部为白球,另一类是取出的m个球中有1个黑球,共有C
 
0
1
•C
 
m
n
+C
 
1
1
•C
 
m-1
n
=C
 
0
1
•C
 
m
n+1
种取法,即有等式:C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
成立.试根据上述思想可得C
 
0
5
•C
 
4
15
+C
 
1
5
•C
 
3
15
+C
 
2
5
•C
 
2
15
+C
 
3
5
•C
 
1
15
+C
 
4
5
•C
 
0
15
=
C
 
4
20
C
 
4
20
(用组合数表示)
分析:C
 
0
5
•C
 
4
15
+C
 
1
5
•C
 
3
15
+C
 
2
5
•C
 
2
15
+C
 
3
5
•C
 
1
15
+C
 
4
5
•C
 
0
15
中,从第一项到最后一项表示从从装有20个球(其中5个白球,15个黑球)的口袋中取出4个球所有情况取法总数的和,根据排列组合公式,易得答案.
解答:解:在C
 
0
5
•C
 
4
15
+C
 
1
5
•C
 
3
15
+C
 
2
5
•C
 
2
15
+C
 
3
5
•C
 
1
15
+C
 
4
5
•C
 
0
15
中,
从第一项到最后一项表示从从装有20个球(其中5个白球,15个黑球)的口袋中取出4个球所有情况取法总数的和,
故答案为:C
 
4
20
点评:这个题结合考查了推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n的球n个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n的球n个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学选修2-32.3离散型随机变量期望方差测试卷(解析版) 题型:解答题

 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n的球n个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n的球n个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n的球n个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.

查看答案和解析>>

同步练习册答案