精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=lnx-x2+x.
(1)求函数f(x)的单调区间;
(2)证明当a≥2时,关于x的不等式$f(x)<({\frac{a}{2}-1}){x^2}+ax-1$恒成立;
(3)若正实数x1,x2满足$f({x_1})+f({x_2})+2({x_1^2+x_2^2})+{x_1}{x_2}=0$,证明${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)令$g(x)=f(x)-[{({\frac{a}{2}-1}){x^2}+ax-1}]=lnx-\frac{1}{2}a{x^2}+({1-a})x+1$,求出函数的导数,得到函数的单调区间,求出函数的最大值,从而证出结论即可;
(3)得到(x1+x22+(x1+x2)=x1x2-ln(x1x2),这样令t=x1x2,t>0,容易求得函数t-lnt的最小值为1,从而得到(x1+x22+(x1+x2)≥1,解这个关于x1+x2的一元二次不等式即可得出要证的结论.

解答 解:(1)$f'(x)=\frac{1}{x}-2x+1=\frac{{-2{x^2}+x+1}}{x}({x>0})$,
由f'(x)<0,得2x2-x-1>0.又x>0,所以x>1,
所以f(x)的单调递减区间为(1,+∞),函数f(x)的单增区间为(0,1).
(2)令$g(x)=f(x)-[{({\frac{a}{2}-1}){x^2}+ax-1}]=lnx-\frac{1}{2}a{x^2}+({1-a})x+1$,
所以$g'(x)=\frac{1}{x}-ax+({1-a})=\frac{{-a{x^2}+({1-a})x+1}}{x}$,
因为a≥2,所以$g'(x)=-\frac{{a({x-\frac{1}{a}})({x+1})}}{x}$,
令g'(x)=0,得$x=\frac{1}{a}$,所以当$x=({0,\frac{1}{a}}),g'(x)>0$,当$x∈({\frac{1}{a},+∞})$时,g'(x)<0,
因此函数g(x)在$x∈({0,\frac{1}{a}})$是增函数,在$x∈({\frac{1}{a},+∞})$是减函数,
故函数g(x)的最大值为$g({\frac{1}{a}})=ln({\frac{1}{a}})-\frac{1}{2}a×{({\frac{1}{a}})^2}+({1-a})×({\frac{1}{a}})+1=\frac{1}{2a}-lna$,
令$h(a)=({\frac{1}{2a}})-lna$,因为$h(2)=\frac{1}{4}-ln2<0$,又因为h(a)在a∈(0,+∞)是减函数,
所以当a≥2时,h(a)<0,即对于任意正数x总有g(x)<0,
所以关于x的不等式恒成立.
(3)由f(x1)+f(x2)+2(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)+x1x2=0,
即lnx1+${{x}_{1}}^{2}$+lnx2+${{x}_{2}}^{2}$+x1x2=0,
从而${{(x}_{1}{+x}_{2})}^{2}$+(x1+x2)=x1x2-ln(x1x2),
令t=x1x2,则由h(t)=t-lnt得,h′(t)=$\frac{t-1}{t}$,
可知,h(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,
∴h(t)≥h(1)=1,
∴(x1+x22+(x1+x2)≥1,又x1+x2>0,
因此x1+x2≥$\frac{\sqrt{5}-1}{2}$成立.

点评 本题考查了函数的单调性问题,考查导数的应用以及换元思想,考查不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若实数m,n满足等式$f(n-3)+f(\sqrt{4m-{m^2}-3})=0$,则$\frac{n}{m}$的取值范围是(  )
A.$[2-\frac{{2\sqrt{3}}}{3},2+\frac{{2\sqrt{3}}}{3}]$B.$[1,2+\frac{{2\sqrt{3}}}{3}]$C.$[2-\frac{{2\sqrt{3}}}{3},3]$D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,正方形ABCD和菱形ACEF所在平面互相垂直,∠ACE=60°.四棱锥E-ABCD的体积是36$\sqrt{6}$.
(Ⅰ)求证:DE∥平面ABF
(Ⅱ)求四面体ABEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求证:已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)求证:已知x,y,z都是正数,求证:$\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}≥\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$•.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,已知A=$\frac{π}{3}$,c=4,△ABC的面积为2$\sqrt{3}$,则a=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$z=\frac{3+7i}{i}$的实部与虚部分别为(  )
A.7,-3B.7,-3iC.-7,3D.-7,3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)对任意x,y∈R满足f(x+y)+f(x-y)=2f(x)f(y),则下列关于函数奇偶性的说法一定正确的是(  )
A.是偶函数但不是奇函数B.是奇函数但不是偶函数
C.是非奇非偶函数D.可能是奇函数也可能是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(1+x-$\frac{2}{x}$)6的展开式中的常数项是141.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知在R上可导的函数f(x)的图象如图所示,则不等式f(x)•f′(x)<0的解集为(  )
A.(-2,0)B.(-∞,-2)∪(-1,0)C.(-∞,-2)∪(0,+∞)D.(-2,-1)∪(0,+∞)

查看答案和解析>>

同步练习册答案