精英家教网 > 高中数学 > 题目详情
已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)
与抛物线C2:y2=2px(p>0)有相同焦点,若双曲线C1与抛物线C2的一个公共点为P,且点P到抛物线的准线的距离为p,则双曲线的离心率为(  )
A、
2
+1
B、
2
C、2
D、2+
2
考点:抛物线的简单性质,双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题意,可得P(
p
2
,p),p=2c,P代入C1
x2
a2
-
y2
b2
=1(a>0,b>0)
,即可求出双曲线的离心率.
解答: 解:由题意,可得P(
p
2
,p),p=2c
P代入C1
x2
a2
-
y2
b2
=1(a>0,b>0)
可得
p2
4a2
-
p2
b2
=1

4c2
4a2
-
4c2
c2-a2
=1

∴e=
c
a
=
2
+1.
故选:A.
点评:本题考查双曲线的离心率的求法,解题时要熟练掌握双曲线和抛物线的简单性质,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆x2+(y-1)2=1关于P(1,2)对称的圆的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=lg(-x-1)的定义域为M,函数f2(x)=lg(x-3)的定义域为N,A=N∪M,函数g(x)=2x-a(x≤2)的值域为B.
(1)求A、B;
(2)若函数A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,若椭圆上存在点A,使∠F1AF2=90°且|AF1|=3|AF2|,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且对任意实数x∈R均有f(x-1)=f(x+1),当x∈[0,1)时,f(x)=2x-1,则f(log
1
2
6
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图,根据图中标出的尺寸,可得这个几何体的表面积是(  )
A、
3
2
B、7+
2
C、7+2
2
D、10+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为一个四棱锥的正视图、侧(左)视图和俯视图,则该四棱锥的表面积为(  )
A、3
B、2+
2
C、2
D、3+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且A=
3
,b=3,△ABC的面积为
15
3
4

(1)求边c的长;
(2)求cos2B的值.

查看答案和解析>>

同步练习册答案