精英家教网 > 高中数学 > 题目详情
(2012•陕西三模)若变量a,b满足约束条件
a+b≤6
a-3b≤-2
a≥1
,n=2a+3b,则n的最小值为(  )
分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数2a+3b的最小值.
解答:解:由约束条件得如图所示的三角形区域,
令n=0得2a+3b=0
平行直线2a+3b=0过点 A(1,1)时,
n得最小值为 5.
故选:D.
点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知点A(-1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知函数f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),则实数b的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2 的小球n个,已知从袋子随机抽取1个小球,取到标号为2的小球的概率是
12

(Ⅰ)求n的值;
(Ⅱ)从袋子中不放回地随机抽取2个球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记“a+b=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知x与y之间的几组数据如下表:
X 0 1 2 3
y 1 3 5 7
则y与x的线性回归方程
y
=bx+a
必过(  )

查看答案和解析>>

同步练习册答案