精英家教网 > 高中数学 > 题目详情
若f(x)=x2+2(a-1)x+2在区间(-∞,2)上是减函数,则实数a的范围是
a≤-1
a≤-1
分析:求出函数f(x)=x2+2(a-1)x+2的对称轴x=1-a,令1-a≤2,即可解出a的取值范围.
解答:解:函数f(x)=x2+2(a-1)x+2的对称轴x=1-a,
又函数在区间(-∞,2)上是减函数,可得1-a≥2,得a≤-1
故答案为:a≤-1
点评:考查二次函数图象的性质,二次项系数为正时,对称轴左边为减函数,右边为增函数,本题主要是训练二次函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=x2-2(1-a)x+2在(-∞,4]上是减函数,则实数a的值的集合是
(-∞,-3]
(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2+2(a-1)x+2在(-∞,4]上是减函数,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)对任意两个实数x1,x2,定义max(x1x2)=
x1x1x2
x2x1x2
若f(x)=x2-2,g(x)=-x,则max(f(x),g(x))的最小值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=(
3
-2)2010•(2+
3
)2010
b=2log2
1
2
+2

(1)求一次函数y=2x-1在区间[a,b]上的值域;
(2)若f(x)=x2-2(|m-1|-1)x+2在区间[a,b]上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2+2(a-1)x+2在[-1,2]上是单调函数,则a的范围为(  )

查看答案和解析>>

同步练习册答案