精英家教网 > 高中数学 > 题目详情

【题目】某车间的一台机床生产出一批零件,现从中抽取8件,将其编为 ,…, ,测量其长度(单位: ),得到如表中数据:

其中长度在区间内的零件为一等品.

(1)从上述8个零件中,随机抽取一个,求这个零件为一等品的概率;

(2)从一等品零件中,随机抽取3个.

①用零件的编号列出所有可能的抽取结果;

②求这3个零件长度相等的概率.

【答案】(1)(2)①见解析②

【解析】试题分析:

18个零件中,长度在区间内的有5个,因此由古典概型概率公式可得;

(2)①任取3个,可按树形结构写出所有可能;②在①中写出的所有可能中长度相等的有4种,由此可得概率.

试题解析:

(1)由所给数据可知,一等品零件共5个,记“从8个零件中,随机抽取一个为一等品”为事件,则

(2)①一等品零件的编号为 ,从这5个一等品零件中随机抽取3个,所有可能的结果有: 共10种.

②记“从一等品零件中,随机抽取3个,且这三个零件长度相等”为事件,则所有可能的结果有: 共4种.

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(Ⅰ)求曲线 在点 处的切线方程;
(Ⅱ)若 恒成立,求实数 的取值范围;
(Ⅲ)求整数 的值,使函数 在区间 上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某中草药材的销售量与年份有关,下表是近五年的部分统计数据:

年份

2008

2010

2012

2014

2016

销售量(吨)

114

115

116

116

114

(1)利用所给数据求年销售量与年份之间的回归直线方程

(2)利用(1)中所求出的直线方程预测该地2018年的中草药的销售量.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.
(Ⅰ)求ω;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g(x)在[﹣ ]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆

1)过点的圆的切线只有一条,求的值及切线方程;

2)若过点且在两坐标轴上截距相等的直线被圆截得的弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知三点A(-1,0)、B(t,2)、C(2,1),t∈RO为坐标原点

(I)若△ABC是∠B为直角的直角三角形,求t的值

(Ⅱ)若四边形ABCD是平行四边形的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为奇函数,为实常数.

(1)求的值;

(2)证明:在区间内单调递增;

(3)若对于区间上的每一个的值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案