精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,平面平面.
(1)证明:平面;
(2)求二面角的大小
(1)详见解析;(2)二面角的大小是

试题分析:(1)求证:平面,证明线面垂直,先证线线垂直,即证线和平面内两条相交直线垂直,由已知可得,只需证明,或,由已知平面平面,只需证明,就得平面,即,而由已知,在直角梯形中,易求,从而满足,即得,问题得证;(2)求二面角的大小,可用传统方法,也可用向量法,用传统方法,关键是找二面角的平面角,可利用三垂线定理来找,但本题不存在利用三垂线定理的条件,因此利用垂面法,即作,与交于点,过点,与交于点,连结,由(1)知,,则,,所以是二面角的平面角,求出的三条边,利用余弦定理,即可求出二面角的大小,用向量法,首先建立空间坐标系,先找三条两两垂直的直线作为坐标轴,观察几何图形可知,以为原点,分别以射线轴的正半轴,建立空间直角坐标系,写出个点坐标,设出设平面的法向量为,平面的法向量为,求出它们的一个法向量,利用法向量的夹角与二面角的关系,即可求出二面角的大小.
(1)在直角梯形中,由得,,由,则,即,又平面平面,从而平面,所以,又,从而平面
(2)方法一:作,与交于点,过点,与交于点,连结,由(1)知,,则,,所以是二面角的平面角,在直角梯形中,由,得,又平面平面,得平面,从而,,由于平面,得:,在中,由,得

中,,得,在中,,得,从而,在中,利用余弦定理分别可得,在中,,所以,即二面角的大小是
方法二:以为原点,分别以射线轴的正半轴,建立空间直角坐标系如图所示,由题意可知各点坐标如下:,设平面的法向量为,平面的法向量为,可算得,由得,,可取,由得,,可取,于是,由题意可知,所求二面角是锐角,故二面角的大小是

点评:本题主要考查空间点,线,面位置关系,二面角等基础知识,空间向量的应用 ,同时考查空间想象能力,与推理论证,运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图6,四棱柱的所有棱长都相等,,四边形和四边形为矩形.
(1)证明:底面;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(1)求二面角的的余弦值;
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:

(1)·
(2)·
(3)EG的长;
(4)异面直线AG与CE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD等于(  )
A.5B.C.4D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积.

(1)求的表达式;
(2)当x为何值时,取得最大值?
(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以为边的平行四边形的面积;
(2)若|a|=,且a分别与垂直,求向量a的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,若点A(1,2,﹣1),B(﹣3,﹣1,4).则|AB|=  .   

查看答案和解析>>

同步练习册答案