精英家教网 > 高中数学 > 题目详情
16.为确定加工某零件的时间,某工人做了四次实验,得到的数据的散点图如图所示.
(1)求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$,并在坐标系中画出回归直线;
(2)试预测加工8个零件需要多少时间(精确到十分位).
参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$.

分析 (1)由散点图中数据,计算回归系数,写出线性回归方程,再画出回归直线;
(2)将y=8代入回归直线方程求出x的值即可.

解答 解:(1)由散点图中数据得,
$\overline{x}$=$\frac{1}{4}$×(2+3+4+5)=3.5,
$\overline{y}$=$\frac{1}{4}$×(1+2+4+5)=3,
$\sum_{i=1}^{4}$xiyi=2×1+3×2+4×4+5×5=49,
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=22+32+42+52=54,
∴$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$=$\frac{49-4×3.5×3}{54-4{×3.5}^{2}}$=1.4,
$\widehata=\overline y-\widehatb•\overline x$=3-1.4×3.5=-1.9,
∴y关于x的线性回归方程是$\widehaty=1.4x-1.9$;
画出回归直线如图所示;…(8分)

(2)将y=8代入回归直线方程,得$\stackrel{∧}{y}$=1.4x-1.9=8,
解得x≈7.1;
∴预测加工8个零件大约需要7.1小时.…(12分)

点评 本题考查了由散点图求线性回归方程的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点,且SD⊥PC.
(1)求二面角P-AC-D的大小;
(2)在侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x1,x2,…,xn的平均数为10,标准差为2,则2x1-1,2x2-1,…,2xn-1的平均数和标准差分别为(  )
A.19和2B.19和3C.19和4D.19和8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x,那么,不等式f(x+2)<5的解集是(-7,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.直线l过点P(2,1),与x轴,y轴的正半轴分布交于A,B两点,O为坐标原点.
(1)当直线l的斜率k=-1时,求△AOB的外接圆的面积;
(2)当△AOB的面积最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC⊥BC,BC=C1C=$\frac{1}{2}AC$=1,D是A1C1上的一点,且C1D=kA1C1
(Ⅰ) 求证:不论k为何值,AD⊥BC;
(Ⅱ) 当k=$\frac{1}{2}$时,求A点到平面BCD的距离;
(Ⅲ) DB与平面ABC所成角θ的余弦值为$\frac{{\sqrt{5}}}{3}$,求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x3-ax2+8.
(1)若f(x)<0对?x∈[1,2]恒成立,求实数a的取值范围;
(2)是否存在整数a,使得函数g(x)=f(x)+4ax2-12a2x+3a3-8在区间(0,1)上存在极小值,若存在,求出所有整数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.炮兵习惯于把周角的$\frac{1}{6000}$作为度量角的单位,称为“密位“,1°及1弧度分别等于多少密位?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.向量$\overrightarrow{a}$=(4cosα,sinα),$\overrightarrow{b}$=(sinβ,4cosβ),$\overrightarrow{c}$=(cosβ,-4sinβ)(α、β∈R且α、β、α+β均不等于$\frac{π}{2}+kπ,k∈Z$).
(Ⅰ)求|$\overrightarrow{b}$+$\overrightarrow{c}$|的最大值;
(Ⅱ)当$\overrightarrow{a}$∥$\overrightarrow{b}$ 且 $\overrightarrow{a}$⊥($\overrightarrow{b}$-2$\overrightarrow{c}$)时,求tanα+tanβ的值.

查看答案和解析>>

同步练习册答案