分析 (1)由散点图中数据,计算回归系数,写出线性回归方程,再画出回归直线;
(2)将y=8代入回归直线方程求出x的值即可.
解答 解:(1)由散点图中数据得,
$\overline{x}$=$\frac{1}{4}$×(2+3+4+5)=3.5,
$\overline{y}$=$\frac{1}{4}$×(1+2+4+5)=3,
$\sum_{i=1}^{4}$xiyi=2×1+3×2+4×4+5×5=49,
$\sum_{i=1}^{4}$${{x}_{i}}^{2}$=22+32+42+52=54,
∴$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$=$\frac{49-4×3.5×3}{54-4{×3.5}^{2}}$=1.4,
$\widehata=\overline y-\widehatb•\overline x$=3-1.4×3.5=-1.9,
∴y关于x的线性回归方程是$\widehaty=1.4x-1.9$;
画出回归直线如图所示;…(8分)
(2)将y=8代入回归直线方程,得$\stackrel{∧}{y}$=1.4x-1.9=8,
解得x≈7.1;
∴预测加工8个零件大约需要7.1小时.…(12分)
点评 本题考查了由散点图求线性回归方程的应用问题,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 19和2 | B. | 19和3 | C. | 19和4 | D. | 19和8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com