精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)x2ex (x0)g(x)x2ln(xa)图象上存在关于y轴对称的点a的取值范围是(  )

A. () B. ()

C. ( ) D. ( )

【答案】B

【解析】由题可得存在x0(0)满足f(x0)g(x0) ex0(x0)2ln(x0a)ex0ln(x0a)0

h(x)exln(xa)

因为函数yexy=-ln(xa)在定义域内都是单调递增的

所以函数h(x)exln(xa)在定义域内是单调递增的

又因为x趋近于-∞函数h(x)0h(x)0(0)上有解(即函数h(x)有零点)

所以h(0)e0ln(0a)0lnalna故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-ax-alnx(a∈R).

(1)若函数f(x)在x=1处取得极值,求a的值;

(2)在(1)的条件下,求证:f(x)≥--4x+.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为: .

1)求 的值;

2)设,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其导函数为.

(1)设,若函数上有且只有一个零点,求的取值范围;

(2)设,且,点是曲线上的一个定点,是否存在实数,使得成立?证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分条件求实数m的取值范围;

(2) 成立的充分不必要条件求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在点(1,1)处的切线方程为xy2.

(1)ab的值;

(2)对函数f(x)定义域内的任一个实数x不等式f(x)0恒成立求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EF分别是ADDD1的中点.

求证:(1)EF∥平面C1BD

(2)A1C⊥平面C1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱和一个正四棱锥组合而成,

(Ⅰ)证明:平面平面

(Ⅱ)求正四棱锥的高,使得二面角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=emx+x2-mx.

(1)证明:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;

(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.

查看答案和解析>>

同步练习册答案