精英家教网 > 高中数学 > 题目详情

(几何证明题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为_______.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)在A,B,C,D四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过
N点的切线交CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)若⊙O的半径为2
3
,OA=
3
OM,求MN的长.
B.选修4-2:矩阵与变换
曲线x2+4xy+2y2=1在二阶矩阵M=
.
1a
b1
.
的作用下变换为曲线x2-2y2=1,求实数a,b的值;
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
y=-1-
3
5
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
设a,b,c均为正实数.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB、AC分别交于E,F,求证:EF∥BC.

B.选修4-2:矩阵与变换
已知a,b∈R若矩阵M=
.
-1a
b3
.
所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.

C.选修4-4:坐标系与参数方程
将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t为参数)化为普通方程.
D.选修4-5:不等式选讲
已知a,b是正数,求证:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•荆州模拟)请在下面两题中选做一题,如果多做,则按所做的第一题计分.
选修4-1:几何证明选讲
如图,割线PBC经过圆心O,PB=OB=1,圆周上有一点D,满足∠COD=60°,连PD交圆于点E,则PE=
3
7
7
3
7
7

选修4-4:坐标系与参数方程
已知直线l经过点P(1,-1),倾斜角的余弦值为-
4
5
,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,设直线l与圆C交于A,B两点,则弦长|AB|=
7
5
7
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)选做题
A.选修4-1:几何证明选讲
如图,自⊙O外一点P作⊙O的切线PC和割线PBA,点C为切点,割线PBA交⊙O于A,B两点,点O在AB上.作CD⊥AB,垂足为点D.
求证:
PC
PA
=
BD
DC

B.选修4-2:矩阵与变换
设a,b∈R,若矩阵A=
a0
-1b
把直线l:y=2x-4变换为直线l′:y=x-12,求a,b的值.
C.选修4-4:坐标系与参数方程
求椭圆C:
x2
16
+
y2
9
=1上的点P到直线l:3x+4y+18=0的距离的最小值.
D.选修4-5不等式选讲
已知非负实数x,y,z满足x2+y2+z2+x+2y+3z=
13
4
,求x+y+z的最大值.

查看答案和解析>>

同步练习册答案