精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,则函数y=|f($\frac{3π}{4}$-x)|是(  )
A.最大值为$\sqrt{2}$b且它的图象关于点(π,0)对称
B.最大值为$\sqrt{2}$a且它的图象关于点($\frac{3π}{4}$,0)对称
C.最大值为$\sqrt{2}$b且它的图象关于直线x=π对称
D.最大值为$\sqrt{2}$a且它的图象关于直线x=$\frac{3π}{4}$对称.

分析 由题意可得f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(a-b)=-$\sqrt{{a}^{2}+{b}^{2}}$,可得b=-a>0,代入化简y=|f($\frac{3π}{4}$-x)|=|$\sqrt{2}$asin($\frac{3π}{4}$-x+$\frac{π}{4}$)|=-$\sqrt{2}$asinx,可得三角函数的最值和对称性.

解答 解:∵函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最小值,
∴化简可得f(x)=asinx-bcosx=$\sqrt{{a}^{2}+{b}^{2}}$sin(x-φ),其中tanφ=$\frac{b}{a}$,
∴f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(a-b)=-$\sqrt{{a}^{2}+{b}^{2}}$<0,
平方可得[$\frac{\sqrt{2}}{2}$(a-b)]2=(-$\sqrt{{a}^{2}+{b}^{2}}$)2=a2+b2,故b=-a>0,
∴f(x)=asinx+acosx=$\sqrt{2}$asin(x+$\frac{π}{4}$)
∴y=|f($\frac{3π}{4}$-x)|=|$\sqrt{2}$asin($\frac{3π}{4}$-x+$\frac{π}{4}$)|=-$\sqrt{2}$asinx,
∴函数的最大值为-$\sqrt{2}$a=$\sqrt{2}$b,关于(π,0)对称.
故选:A.

点评 本题考查两角和与差的三角函数,涉及三角函数图象的对称性和最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求函数y=$\frac{sinx+1}{2sinx-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(1)若直线l的倾斜角a满足$\frac{π}{4}$≤a≤$\frac{3}{4}$π,则直线l的斜率的范围是(-∞,-1]∪[1,+∞)
(2)若直线l的斜率为$\frac{4}{3}$,而直线m的倾斜角是直线l倾斜角的2倍,则直线m的斜率是$-\frac{24}{7}$
(3)若直线l的倾斜角的正弦是$\frac{\sqrt{3}}{2}$,则直线l的斜率是$±\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.P是双曲线$\frac{{x}^{2}}{3}$-y2=1的右支上一动点,F是双曲线的右焦点,已知A(3,1)
(1)求|PA|+|PF|的最小值;
(2)求|PA|-|PF|的最大值;
(3)求|PA|+$\frac{\sqrt{3}}{2}$|PF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=a(bn-1)(a≠0,b≠0且b≠1),证明:{an}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=xlnx+2015,若f′(x0)=2,则x0=(  )
A.e2B.eC.$\frac{ln2}{2}$D.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.倡导全民阅读是传承文明、更新知识、提高民族素质的基本途径.某调查公司随机调查了1000位成年人一周的平均阅读时间(单位:小时),他们的阅读时间都在[0,20]内,将调查结果按如下方式分成五组:第一组[0,4),第二组[4,8),第三组[8,12),第四组[12,16),第五组[16,20],并绘制了频率分布直方图,如图.假设每周平均阅读时间不少于12小时的人,称为“阅读达人”.
(Ⅰ)求这1000人中“阅读达人”的人数;
(Ⅱ)从阅读时间为[8,20]的成年人中按分层抽样抽取9人做个性研究.从这9人中随机抽取2人,求这2人都不是“阅读达人”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某同学用五点法画函数$f(x)=Asin(ωx+φ),(ω>0,|φ|<\frac{π}{2})$在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)03-30
(Ⅰ)请将表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)若函数f(x)的单调递增区间;
(Ⅲ)求f(x)在区间$[-\frac{π}{4}\;,\;\frac{π}{6}]$上的最小值.

查看答案和解析>>

同步练习册答案