精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,OAOBOC所在直线两两垂直,且CA与平面AOB所成角为DAB中点,三棱锥的体积是

1)求三棱锥的高;

2)在线段CA上取一点E,当E在什么位置时,异面直线BEOD所成的角为

【答案】1;(2E是线段CA中点.

【解析】

1)设,则,代入体积公式计算得到答案.

2))以轴,轴,轴建立如图所示空间直角坐标系,设

,根据,代入计算得到答案.

1)因为,所以

所以就是CA与平面AOB所成角,所以

,则

所以

所以,所以三棱锥的高

2)以轴,轴,轴建立如图所示空间直角坐标系

,设

BEOD所成的角为,则,所以(舍去),

所以当E是线段CA中点时,异面直线BEOD所成的角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816、…,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,若且该数列的前项和为2的整数幂,则的最小值为(

A.440B.330C.220D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中是等差数列,且,则________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(本题满分15分)已知m1,直线

椭圆分别为椭圆的左、右焦点.

)当直线过右焦点时,求直线的方程;

)设直线与椭圆交于两点,

的重心分别为.若原点在以线段

为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,已知异面直线所成的角为,给出下面三个命题:

:若,则此四棱锥的侧面积为

:若分别为的中点,则平面

:若都在球的表面上,则球的表面积是四边形面积的倍.

在下列命题中,为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1S2.

(1) 若小路一端EAC的中点,求此时小路的长度;

(2) 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线的斜率为2的切线方程;

2)证明:

3)确定实数的取值范围,使得存在,,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的焦点是,且过点

1)求椭圆的标准方程;

2)过左焦点的直线与椭圆相交于两点,为坐标原点.问椭圆上是否存在点,使线段和线段相互平分?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第二届中国国际进口博览会于2019115日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下列联表:

男性

女性

合计

关注度极高

35

14

49

关注度一般

15

36

51

合计

50

50

100

1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;

2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.

附:.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案