精英家教网 > 高中数学 > 题目详情
5.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-($-\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+1.5-2
(2)已知log73=alog74=b,求log748.(其值用a,b表示)

分析 (1)利用有理指数幂的运算法则化简求解即可.
(2)直接利用对数运算法则化简求解即可.

解答 (本题满分10分)
解:(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-($-\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+1.5-2
=$\frac{3}{2}-1-\frac{4}{9}+=\frac{1}{2}$---------------------(5分)
(2)log73=a,log74=b,
log748=log7(3×16)
=log73+log716
=log73+2log74
=a+2b.----------------------------(5分)

点评 本题考查对数的运算法则以及有理指数幂的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设集合A={4,5,7,9},B={3,4,5,7,8,9},则集合∁BA中的元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow{b}$=(2cos(2x-$\frac{π}{3}$),-1).令f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的最小正周期及单调增区间.
(2)若f($\frac{1}{4}$θ)=$\frac{2}{3}$,且θ∈($\frac{π}{6}$,$\frac{5π}{6}$),求cosθ的值.
(2)当x∈[$\frac{π}{4}$,$\frac{π}{2}$]时,求f(x)的最小值以及取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①已知集合M满足∅?M⊆{1,2,3,4},且M中至多有一个偶数,这样的集合M有12个;
②已知函数f(x)满足条件:$f(x)+2f(\frac{1}{x})={log_2}x$,则f(2)等于-1;
③设A、B为非空集合,定义集合A+B={x|x∈A或x∈B且x∉A∩B},若$P=\{x|y=\sqrt{{x^2}-4x}\}$,Q={y|y=3x+1},则P+Q={x|x≤0或1<x≤4};
④如果函数y=f(x)的图象关于y轴对称,且f(x)=(x-2015)2+1(x≥0),则当x<0时,f(x)=(x+2015)2+1;
其中正确的命题的序号是②④(把所有正确的命题序号写在答题卷上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{π,x为无理数}\end{array}\right.$,下列结论不正确的(  )
A.此函数为偶函数B.此函数的定义域是R
C.此函数既有最大值也有最小值D.方程f(x)=-x无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设n∈N,求证:
(1)$\sqrt{n+1}$-1<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{n}}$<$\sqrt{n}$;
(2)$\frac{1}{2n+1}$<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)满足f(cosx)=$\frac{1}{2}$x(0≤x≤π),则f(sin$\frac{4π}{3}$)=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.奇函数f(x)在其定义域(-1,1)内单调递增,且f(1-a)+f(1-a2)<0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线l与平面内无数条直线垂直,则(  )
A.l?aB.l∥aC.l与a相交D.以上都有可能

查看答案和解析>>

同步练习册答案