精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C的对边为a,b,c,b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,则A等于(  )
A.30°B.60°C.30°或150°D.60°或120°

分析 运用三角形的面积公式S△ABC=$\frac{1}{2}$bcsinA,结合特殊角的正弦函数值,可得角A.

解答 解:由b=8,c=8$\sqrt{3}$,S△ABC=16$\sqrt{3}$,
则S△ABC=$\frac{1}{2}$bcsinA
=$\frac{1}{2}$×$8×8\sqrt{3}$sinA=16$\sqrt{3}$,
即为sinA=$\frac{1}{2}$,
由于0°<A<180°,
则A=30°或150°.
故选C.

点评 本题考查三角形的面积公式的运用,考查特殊角的正弦函数值,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知抛物线x2=4y上的动点P在x轴上的射影为点M,点A(3,2),则|PA|+|PM|的最小值为$\sqrt{10}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z满足z(1+i)=4-2i(i为虚数单位),则|z|=(  )
A.$\sqrt{10}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P(a+b,a-b)在不等式组$\left\{{\begin{array}{l}{x-2y+2≥0}\\{y≥|x|}\end{array}}\right.$表示的区域内,则2a+b的最大值为(  )
A.$-\frac{2}{3}$B.0C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正方体ABCD-A1B1C1D1中,平面ACB1的一个法向量为(  )
A.$\overrightarrow{B{D}_{1}}$B.$\overrightarrow{DB}$C.$\overrightarrow{B{A}_{1}}$D.$\overrightarrow{B{B}_{1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x2+ax-blnx,
(1)若y=f(x)在(1,f(1))处的切线方程为y=2x,求a,b的值.
(2)若b=1,令g(x)=$\frac{f(x)}{{e}^{x}}$,若函数g(x)在区间(0,1]上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x的不等式x2+ax+b<0的解集为{x|1<x<2},则a2+b2=13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{(x-\frac{1}{x})^{6},x<0}\\{-\sqrt{x},x≥0}\end{array}\right.$,则当x>0时,f[f(x)]表达式的展开式中常数项为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式:$\frac{|5x-3|-|4x+1|}{{x}^{2}+x+1}$<0.

查看答案和解析>>

同步练习册答案