精英家教网 > 高中数学 > 题目详情

【题目】已知定点,动点两点连线的斜率之积为.

1)求点的轨迹的方程;

2)已知点是轨迹上的动点,点在直线上,且满足(其中为坐标原点),求面积的最小值.

【答案】12

【解析】

1)设点,则,且,化简即可得出答案;

2)由题意,当点在椭圆的左右顶点位置时,易求出面积;当点不在椭圆的左右顶点位置时,设直线的斜率,联立直线与椭圆的方程可求得,同理可求得,再利用换元法即可求出面积的最值.

解:(1)设点,则,且

所以

化简得

故点的轨迹的方程为

2)因为,所以

当点在椭圆的左右顶点位置时,

当点不在椭圆的左右顶点位置时,直线的斜率存在且不为0

设为,则的方程为

解得所以

此时的方程为,所以

,则,且

所以,

综上可知,面积的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,已知,,.

(1)证明:为等比数列,求出的通项公式;

(2)若,求的前n项和,并判断是否存在正整数n使得成立?若存在求出所有n值;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知分别为线段的中点,所成角的大小为90°,且.

求证:(1)平面平面

2平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】九章算术给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除中,,两条平行线间的距离为h,直线到平面的距离为,则该羡除的体积为已知某羡除的三视图如图所示,则该羡除的体积为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其定义域内有两个不同的极值点.

1)求实数的取值范围;

2)试比较的大小,并说明理由;

3)设的两个极值点为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求直线和圆的普通方程;

(2)已知直线上一点,若直线与圆交于不同两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,为底面的中心,为棱的中点,则下列结论中错误的是(

A.平面B.平面

C.异面直线所成角为D.与底面所成角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.

1)当时,求某个时间段需要检查污染源处理系统的概率;

2)若每套环境监测系统运行成本为300/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间与极值.

(2)时,是否存在,使得成立?若存在,求实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案