分析 (1)根据向量的平行结合正弦定理求出B的值即可;(2)根据三角函数的性质求出sinA+sinC=$\sqrt{3}$sin(A+$\frac{π}{6}$),结合A的范围求出sinA+sinC的范围即可.
解答 解:(1 )由$\overrightarrow{m}$∥$\overrightarrow{n}$,得bcosC=(2a-c)cosB,
∴bcosC+ccosB=2acosB,
由正弦定理,得sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,
又B+C=π-A
∴sinA=2sinAcosB,
又sinA≠0,
∴cosB=$\frac{1}{2}$,
又B∈(0,π),
∴B=$\frac{π}{3}$;
(2)由(1)sinA+sinC
=sinA+sin($\frac{2}{3}$π-A)
=$\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA
=$\sqrt{3}$sin(A+$\frac{π}{6}$),A∈(0,$\frac{2π}{3}$),
故$\frac{\sqrt{3}}{2}$<sinA+sinC<$\sqrt{3}$.
点评 本题考查了平行向量的性质,考查正弦定理以及三角函数的性质,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{1}{2}$ | B. | $-\frac{3}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}-1$ | D. | $\frac{{\sqrt{3}}}{2}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | $\frac{3π}{8}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com