【题目】某企业为了提高企业利润,从2014年至2018年每年都对生产环节的改进进行投资,投资金额(单位:万元)与年利润增长量(单位:万元)的数据如表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额/万元 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
年利润增长量/万元 | 6.0 | 7.0 | 9.0 | 11.0 | 12.0 |
(1)记年利润增长量投资金额,现从2014年至2018年这5年中抽出两年进行调查分析,求所抽两年都是万元的概率;
(2)请用最小二乘法求出关于的回归直线方程;如果2019年该企业对生产环节改进的投资金额为10万元,试估计该企业在2019年的年利润增长量为多少?
参考公式:,;
参考数据:,.
科目:高中数学 来源: 题型:
【题目】抛物线C的顶点在坐标原点,对称轴为x轴,抛物线C过点A(4,4),过抛物线C的焦点F作倾斜角等于45°的直线l,直线l交抛物线C于M、N两点.
(1)求抛物线C的方程;
(2)求线段MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对任意, 有唯一确定的与之对应,则称为关于, 的二元函数,现定义满足下列性质的为关于实数, 的广义“距离”.
()非负性: ,当且仅当时取等号;
()对称性: ;
()三角形不等式: 对任意的实数均成立.
给出三个二元函数:①;②;③,
则所有能够成为关于, 的广义“距离”的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:
①已知点,动点满足,则点的轨迹是一个圆;
②已知,则动点的轨迹是双曲线;
③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;
④在平面直角坐标系内,到点和直线的距离相等的点的轨迹是抛物线;
正确的命题是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论(素数即质数,).根据欧拉得出的结论,如下流程图中若输入的值为,则输出的值应属于区间( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,设直线与轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.
(1)若直线的倾斜角为,求的值;
(2)设直线交直线于点,证明:直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:
x(年) | 2 | 3 | 4 | 5 | 6 |
y(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y对x呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com