精英家教网 > 高中数学 > 题目详情

【题目】某企业为了提高企业利润,从2014年至2018年每年都对生产环节的改进进行投资,投资金额(单位:万元)与年利润增长量(单位:万元)的数据如表:

年份

2014

2015

2016

2017

2018

投资金额/万元

4.0

5.0

6.0

7.0

8.0

年利润增长量/万元

6.0

7.0

9.0

11.0

12.0

1)记年利润增长量投资金额,现从2014年至2018年这5年中抽出两年进行调查分析,求所抽两年都是万元的概率;

2)请用最小二乘法求出关于的回归直线方程;如果2019年该企业对生产环节改进的投资金额为10万元,试估计该企业在2019年的年利润增长量为多少?

参考公式:

参考数据:.

【答案】1 2)该企业在该年的年利润增长量大约为15.4万元.

【解析】

1)利用列举法列举出年中抽出两年的基本事件总数,然后求得其中两年都是的基本事件数,根据古典概型概率计算公式,计算出所求的概率.

(2)利用回归直线方程计算公式,计算出回归直线方程,并将代入回归直线方程,求得年利润增长量的估计值.

12014年至2018年的分别记为:

抽取两年的基本事件有:

,共10种,

其中两年都是的基本事件有:,共3种,

故所求概率为.

2

所以回归直线方程为,将代入上述方程得

即该企业在该年的年利润增长量大约为15.4万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:当时,

(2)若有极大值,求的取值范围;

(3)若处取极大值,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C的顶点在坐标原点,对称轴为x轴,抛物线C过点A(4,4),过抛物线C的焦点F作倾斜角等于45°的直线l,直线l交抛物线C于M、N两点.

(1)求抛物线C的方程;

(2)求线段MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意 有唯一确定的与之对应,则称为关于 的二元函数,现定义满足下列性质的为关于实数 的广义距离

)非负性: ,当且仅当时取等号;

)对称性:

)三角形不等式: 对任意的实数均成立.

给出三个二元函数:①

则所有能够成为关于 的广义距离的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

①已知点,动点满足,则点的轨迹是一个圆;

②已知,则动点的轨迹是双曲线;

③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

④在平面直角坐标系内,到点和直线的距离相等的点的轨迹是抛物线;

正确的命题是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动,在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论(素数即质数,).根据欧拉得出的结论,如下流程图中若输入的值为,则输出的值应属于区间( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,设直线轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.

(1)若直线的倾斜角为,求的值;

(2)设直线交直线于点,证明:直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了工厂技术改造后某种型号设备的使用年限x和所支出的维修费y(万元)的几组对照数据:

x(年)

2

3

4

5

6

y(万元)

1

2.5

3

4

4.5

1)若知道yx呈线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量,其中,则下列判断错误的是( )

A.向量轴正方向的夹角为定值(与之值无关)

B.的最大值为

C.夹角的最大值为

D.的最大值为l

查看答案和解析>>

同步练习册答案