精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别是a,b,c,且满足A=45°,
(Ⅰ)求sinC的值;
(Ⅱ)设a=5,求△ABC的面积.
【答案】分析:(Ⅰ)由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由A的度数及内角和定理表示出C,利用两角和和差的正弦函数公式化简后,将cosB及sinB的值代入即可求出sinC的值;
(Ⅱ)由sinA,sinB及a的值,利用正弦定理求出b的值,再由a,b及sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(Ⅰ)∵cosB=,∴sinB==
∴sinC=sin(A+B)=sin(45°+B)=(cosB+sinB)=
(Ⅱ)由正弦定理得,b===4
∴S△ABC=absinC=×5×4×=14.
点评:此题考查了了正弦定理,两角和与差的正弦函数公式,同角三角函数间的基本关系,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案