精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数(a,b为常数)满足条件,且方程有两个相等的实数根.

(1)求的解析式;

(2)是否存在实数(m<n),使得的定义域和值域分别为,如果存在,求出。不存在,说明理由。

【答案】(1)(2)

【解析】试题分析:(1)由条件,得二次函数对称轴,再根据方程有两个相等的实数根得判别式为零,解方程组得a,b值(2)先确定函数值域得最大值为,因此可得范围,进而可得定义区间与对称轴位置关系,确定对应单调关系,得有两个不等实根,求出

试题解析:解:()由方程有两个相等的实数根

(b-2)2 =0,则b=2,.

知对称轴方程为,

(2) 存在.由

而抛物线的对称轴为x=1,则时,

在[m,n]上为增函数.

假设满足题设条件的m,n存在,

解得

又m<n,所以存在

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={y|y=x ,x∈R},C={x|mx<﹣1},
(1)求R(A∩B);
(2)是否存在实数m使得(A∩B)C成立,若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为线段上一点, 的中点.

1)证明: 平面

2)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=4与x轴负半轴的交点为A,点P在直线l: x+y﹣a=0上,过点P作圆O的切线,切点为T
(1)若a=8,切点T( ,﹣1),求点P的坐标;
(2)若PA=2PT,求实数a的取值范围;
(3)若不过原点O的直线与圆O交于B,C两点,且满足直线OB,BC,OC的斜率依次成等比数列,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)写出函数f(x)(x∈R)的解析式.
(2)若函数g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),求函数g(x)的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,判断函数在区间上的单调性;

(2)求证:曲线不存在两条互相平行且倾斜角为锐角的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求曲线在点处的切线方程;

2)当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2a﹣1<x<3a+1},集合B={x|﹣1<x<4}.
(1)若AB,求实数a的取值范围;
(2)是否存在实数a,使得A=B?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的点.
(1)求证:平面EAC⊥平面PBC;
(2)若E是PB的中点,求二面角P﹣AC﹣E的余弦值.

查看答案和解析>>

同步练习册答案