精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体的棱长为1, 分别是棱的中点,过直线的平面分别与棱交于,设, ,给出以下四个命题:

②当且仅当时,四边形的面积最小;

③四边形周长, ,则是奇函数;

④四棱锥的体积为常函数;

其中正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】连结 ,则由正方体的性质可知, 平面 ,所以,所以正确.
因为,四边形 的对角线 是固定的,所以要使面积最小,则只需 的长度最小即可,此时当 为棱的中点时,即 时,此时 长度最小,对应四边形 的面积最小.所以正确.
因为 ,所以四边形 是菱形.函数

为偶函数,故不正确.

连结 ,则四棱锥则分割为两个小三棱锥,它们以 为底,以 分别为顶点的两个小棱锥.因为三角形 的面积是个常数. 到平面的距离是个常数,所以四棱锥 的体积 为常函数,所以正确.
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四边形中, ,将沿折起,使平面平面,构成四面体,则在四面体中,下列说法不正确的是( ).

A. 直线直线 B. 直线直线

C. 直线平面 D. 平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)的最小正周期和单调递增区间;

(Ⅱ)已知abc是△ABC三边长,且fC)=2,△ABC的面积S=c=7.求角Cab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin2x(x∈R)图象上所有的点向左平移 个单位长度,所得图象的函数解析式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinxcosx将 f(x)的图象向右平移 (0<φ<π) 个单位,得到y=g(x)图象且g(x)的一条对称轴是直线x=
(1)求φ;
(2)求函数y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为公差不为的等差数列, 为前项和, 的等差中项为,且.令数列的前项和为

1)求

2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]

(1)求频率分布图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是首项为19公差为-2的等差数列的前项和

1求通项

2是首项为1公比为3的等比数列求数列的通项公式及其前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x= 时,f(x)取得最大值3;当x= 时,f(x)取得最小值﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案