精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
a
2
n
-1
(n∈N),求数列{bn}的前n项和Tn
分析:(1)根据等差数列的两项之和的值,根据等差数列等差中项的性质得到a6,根据连续两项得到数列的公差,根据通项写出要求的第四项和数列的前n项和.
(2)本题需要根据上一问的结果构造新数列,把第一问做出的通项代入,整理出结果,发现这是一个裂项求和的问题,得到前n项和.
解答:解(1)∵a3=7,a5+a7=26.
a6=13

d=2∴a4=9
sn=
[3+(2n+1)]n
2
=n2+2n

(2)由第一问可以看出an=2n+1
bn=
1
(2n+1)2-1
=
1
4n2+4n

=
1
4
×
1
n(n+1)

∴Tn=
1
4
(
1
1
-
1
2
+
1
2
-
1
3
++
1
n
-
1
n+1
)=
n
4(n+1)
点评:本题考查等差数列的性质,考查数列的构造,解题的关键是看清新构造的数列是一个用什么方法来求和的数列,注意选择应用合适的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案