精英家教网 > 高中数学 > 题目详情
5.已知圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-2ax-2by+a2-1=0,若a,b变化时,圆C2始终平分圆C1的周长,则圆C2的面积最小值时的方程为(x+1)2+(y+2)2=5..

分析 把两圆的方程相减即得两圆公共弦所在直线l方程,由题意知直线l经过圆C1的圆心,得a2+2a+2b+5=0,可得b≤-2,由圆C2的方程可得半径为$\sqrt{1+{b}^{2}}$≥$\sqrt{5}$,由此求得此时圆C2的方程.

解答 解:把两圆的方程相减即得两圆公共弦所在直线l方程为2(a+1)x+2(b+1)y-a2-1=0,
由题意知直线l经过圆C1的圆心(-1,-1),因而 a2+2a+2b+5=0.
所以2b+4=-(a+1)2≤0,
所以b≤-2,
圆C2:(x-a)2+(y-b)2=1+b2,其半径为$\sqrt{1+{b}^{2}}$.
因而$\sqrt{1+{b}^{2}}$,
此时圆C2:(x+1)2+(y+2)2=5.
故答案为:(x+1)2+(y+2)2=5.

点评 本题主要考查两圆的位置关系及其判定,求圆的标准方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,点F1、F2为其左、右焦点,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t∈R).
(Ⅰ)求曲线C的标准方程和直线l的普通方程;
(Ⅱ)若点P为曲线C上的动点,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面区域内运动,则z=x-y的最大值是(  )
A.-1B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_3}x,x>0\end{array}\right.$,则$f[f(\frac{1}{27})]$的值为(  )
A.$\frac{1}{8}$B.8C.-8D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A={-1,0,1},集合B满足A∪B={-1,0,1},则集合B有8个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点P(a,3)到直线4x-3y+1=0的距离等于4,则P点的坐标是(  )
A.(7,3)B.(3,3)C.(7,3)或(-3,3)D.(-7,3)或(3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,已知a1=2,a2=4,那么a5=(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A(2,0)、B(0,2),从点P(1,0)射出的光线经直线AB反向后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是(  )
A.3B.2$\sqrt{2}$C.$\sqrt{10}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列$\frac{\sqrt{3}}{2}$、$\frac{\sqrt{5}}{4}$、$\frac{\sqrt{7}}{6}$、$\frac{3}{a-b}$、$\frac{\sqrt{a+b}}{10}$…根据前三项给出的规律,则实数对(a,b)可能是(  )
A.(10,2)B.(10,-2)C.($\frac{19}{2}$,$\frac{3}{2}$)D.($\frac{19}{2}$,-$\frac{3}{2}$)

查看答案和解析>>

同步练习册答案