精英家教网 > 高中数学 > 题目详情

【题目】已知某公司生产一种品牌服装的年固定成本为10万元,且每生产1万件,需要另投入1.9万元.R(x)(单位:万元)为销售收入,根据市场调查知R(x)= 其中x(单位:万件)是年产量.

(1)写出年利润W(单位:万元)关于年产量x的函数解析式.

(2)当年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?

【答案】(1)见解析(2)9

【解析】

(1)依据利润的计算方法,即利润=销售收入﹣投入,直接写出年利润函数即可.

(2)分类讨论:当0≤x≤10时;当x10时,分别求出分段上各个函数的最大值,最后综合得出当年产量为多少万件,公司所获得的利润最大即可.

:(1)依题意有,W=

(2) 当0≤x≤10时,∵W(x)=∴W′(x)=

令W′(x)=0,解得x=9.

若0≤x<9,则W′(x)0;若9<x≤10,则W′(x)<0,

W(x)的最大值为W(9)=38.6.

当x10时,W(x)=

综上可知,当x=9时W(x)的最大值为W(9)=38.6

答:当年产量为9万件,公司所获得的利润最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,则下列命题中的假命题是(
A.若|z1﹣z2|=0,则 =
B.若z1= ,则 =z2
C.若|z1|=|z2|,则z1? =z2?
D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表数据是水的温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的.

x/℃

300

400

500

600

700

800

y/%

40

50

55

60

67

70

(1)画出散点图;

(2)指出x,y是否线性相关,若线性相关,求y关于x的回归方程;

(3)估计水的温度是1000 ℃时,黄酮延长性的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌豆腐食品是经过A,B,C三道工序加工而成的,A,B,C工序的产品合格率分别为,,.已知每道工序的加工都相互独立,三道工序加工的产品都合格时产品为一等品;恰有两次合格为二等品;其他的为废品,不进入市场.

(1)生产一袋豆腐食品,求产品为废品的概率;

(2)生产一袋豆腐食品,X为三道加工工序中产品合格的工序数,X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示.

(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.
(2)从该班中任意选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
(3)从该班中任意选两名学生,用η表示这两人参加活动次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1,F2为椭圆的两个焦点,P为椭圆上的一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2aln x(aR).

(1)f(x)x=2处取得极值,求a的值;

(2)f(x)的单调区间;

(3)求证:当x>1时, x2+ln x<x3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:∥平面EFGH;

(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出的S的值为n,则m+n=

查看答案和解析>>

同步练习册答案