精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,点A(x,y)与点B关于x轴对称,
j
=(0,1)
,则满足不等式
OA
2
+
j
AB
≤0
的点A的集合用阴影表示(  )
A.B.C.D.
由题得:B(-x,y),
AB
=(0,2y).
OA
2
+
j
AB
=x2+y2+2y=x2+(y-1)2-1.
∴不等式
OA
2
+
j
AB
≤0
转化为x2+(y-1)2≤1.
故满足要求的点在以(o,1)为圆心,1为半径的圆上以及圆的内部.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设点是线段上的一点,的坐标分别是
(1)  当点是线段的中点时,求点的坐标;
(2)  当点是线段的一个三等分点时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体O-ABC中,
OA
=
a
OB
=
b
OC
=
c
D为BC的中点,E为AD的中点,则向量
OE
用向量
a
b
c
表示为(  )
A.
OE
=
1
2
a
+
1
2
b
+
1
2
c
B.
OE
=
1
2
a
+
1
4
b
+
1
4
c
C.
OE
=
1
4
a
+
1
4
b
+
1
4
c
D.
OE
=
a
+
1
4
b
+
1
4
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆在正方形内的圆弧上的任意一点,设向量
AC
DE
AP

(Ⅰ)求点(μ,λ)的轨迹方程(不需限制变量取值范围);
(Ⅱ)求λ+μ的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若
AB
=
a
AD
=
b
AA1
=
c
,则向量
BM
a
b
c
,可表示为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知向量
a
=(1,n),
b
=(-1,n),2
a
-
b
b
垂直,|
a
|=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,已知AB、BC、CA的长分别为c、a、b,利用向量方法证明:b2=a2+c2-2accosB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设过点的直线分别与正半轴, 轴正半轴交于两点,为坐标原点,则三角形面积最小时直线方程为                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知点,()是曲线C上的两点,点关于轴对称,直线分别交轴于点和点
(Ⅰ)用分别表示;
(Ⅱ)某同学发现,当曲线C的方程为:时,是一个定值与点的位置无关;请你试探究当曲线C的方程为:时, 的值是否也与点M、NP的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).

查看答案和解析>>

同步练习册答案