精英家教网 > 高中数学 > 题目详情
13.设双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1( a>0,b>0)的一条渐近线与抛物线 y=x2+1只有一个公共点,则双曲线的离心率为(  )
A.$\frac{5}{4}$B.5C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

分析 由双曲线方程求得双曲线的一条渐近线方程,与抛物线方程联立消去y,进而根据判别式等于0求得 $\frac{b}{a}$,进而根据c=$\sqrt{{a}^{2}+{b}^{2}}$求得 $\frac{c}{a}$即离心率.

解答 解:双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1( a>0,b>0)的一条渐近线为y=$\frac{b}{a}$x,
由方程组$\left\{\begin{array}{l}{y=\frac{b}{a}x}\\{y={x}^{2}+1}\end{array}\right.$,消去y,
x2-$\frac{b}{a}$x+1=0有唯一解,
所以△=($\frac{b}{a}$)2-4=0,
所以$\frac{b}{a}$=2,e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$=$\sqrt{1+(\frac{b}{a})^{2}}$=$\sqrt{5}$,
故选:D.

点评 本题主要考查了双曲线的简单性质.离心率问题是圆锥曲线中常考的题目,解决本题的关键是找到a和b或a和c或b和c的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知{an}的前n项和为${S_n}=1-5+9-13+17-21+…+{({-1})^{n-1}}({4n-3})$,则S17-S22的值是(  )
A.-11B.46C.77D.-76

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若数f(x)=lnx+x2+ax(a∈R)
(1)若函数f(x)的图象在点P(1,f(1))处的切线与直线x+2y-1=0垂直,求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=lnx+$\frac{a}{ex}$
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a=2,证明:对任意的实数x>0,都有f(x)>e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设m为实数,函数f(x)=-e2x+2x+m.x∈R
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当m≤1且x>0时,e2x>2x+2mx+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设两个独立事件A和B都不发生的概率为$\frac{1}{9}$,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C1:x2+y2+2x-6y+1=0,与圆C2:x2+y2-4x+2y-11=0相交于A,B两点,求AB所在的直线方程和公共弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,曲线y=x2-8x+2与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)设圆C圆心为C,点D坐标为(2,$\frac{1}{2}$),试在直线x-y-6=0上确定一点P,使得|PC|+|PD|最小,求此时点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.10颗骰子同时掷出,共掷5次,至少有一次全部出现一个点的概率是(  )
A.${[{1-{{({\frac{5}{6}})}^{10}}}]^5}$B.${[{1-{{({\frac{5}{6}})}^6}}]^{10}}$C.1 $-{[{1-{{({\frac{1}{6}})}^5}}]^{10}}$D.1$-{[{1-{{({\frac{1}{6}})}^{10}}}]^5}$

查看答案和解析>>

同步练习册答案