精英家教网 > 高中数学 > 题目详情

【题目】某学校为倡导全体学生为特困学生捐款,举行一元钱,一片心,诚信用水活动学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱现统计了连续5天的售出和收益情况,如下表:

售出水量x(单位:箱)

7

6

6

5

6

收益y(单位:元)

165

142

148

125

150

(Ⅰ) 若xy成线性相关,则某天售出8箱水时,预计收益为多少元?

(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201—500 名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金。甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.

⑴在学生甲获得奖学金条件下,求他获得一等奖学金的概率;

⑵已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X 的分布列及数学期望

附:

【答案】(Ⅰ)186元;(Ⅱ)(1);(2)分布列见解析,期望为600.

【解析】试题分析:

()由题意可求得回归方程为,据此预测售出8箱水时,预计收益为186元;

() (1)由条件概率公式可得他获得一等奖学金的概率是

(2) 由题意可得X的取值可能为03005006008001000据此求得分布列,然后计算可得数学期望为600.

试题解析:

时,

即某天售出8箱水的预计收益是186

(Ⅱ) ⑴设事件A学生甲获得奖学金,事件B学生甲获得一等奖学金

则即学生甲获得奖学金的条件下,获得一等奖学金的概率为

X的取值可能为03005006008001000

的分布列为:

(元)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.

1)求椭圆的方程及离心率的值;

2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点.,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.
(1)求圆C的标准方程;
(2)若P(x,y)是圆C上的动点,求3x﹣4y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的极值;

Ⅱ)当时,讨论的单调性;

)若对于任意的都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ= . (Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)过点P(0,2)作斜率为1直线l与曲线C交于A,B两点,试求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.
(1)求取得的两个球颜色相同的概率;
(2)求取得的两个球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为2的正方形边的中点,将分别沿折起,使得点与点重合,记为点,得到三棱锥

(Ⅰ)求证:平面平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=2sin(2x+ )的图象,只需把函数y=2sinx的图象(
A.向左平移 个单位长度,再把所得各点的横坐标变为原来的2倍(纵坐标不变)
B.向左平移 个单位长度,再把所得各点的横坐标变为原来的 倍(纵坐标不变)
C.各点的纵坐标不变、横坐标变为原来的2倍,再把所得图象向左平移 个单位长度
D.各点的纵坐标不变、横坐标变为原来的 倍,再把所得图象向左平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的右焦点在直线 上,且椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为.

(1)求椭圆的方程;

(2)若直线经过点,且与椭圆有两个交点 ,是否存在直线 (其中)使得 的距离 满足恒成立?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案