精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)是奇函数,且定义域为(-∞,0)∪(0,+∞).若x<0时,f(x)=lg$\frac{1-x}{2}$.
(1)求f(x)的解析式;
(2)解关于x的不等式f(x)>0.

分析 (1)设x>0,则-x<0,代入已知解析式得f(-x)的解析式,再利用奇函数的定义,求得函数f(x)(x<0)的解析式,
(2)原不等式化为$\left\{\begin{array}{l}{-lg\frac{1+x}{2}>0}\\{x>0}\end{array}\right.$,或$\left\{\begin{array}{l}{lg\frac{1-x}{2}>0}\\{x<0}\end{array}\right.$,根据对数的性质,解得即可.

解答 解:(1)设x>0,则-x<0,
∴f(-x)=lg$\frac{1+x}{2}$,
∵函数f(x)是定义域为R的奇函数,
∴f(-x)=-f(x),
∴f(x)=-f(-x)=-lg$\frac{1+x}{2}$,
∴f(x)=$\left\{\begin{array}{l}{-lg\frac{1+x}{2},x>0}\\{lg\frac{1-x}{2},x<0}\end{array}\right.$;
(2)f(x)>0,
∴$\left\{\begin{array}{l}{-lg\frac{1+x}{2}>0}\\{x>0}\end{array}\right.$,或$\left\{\begin{array}{l}{lg\frac{1-x}{2}>0}\\{x<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{1+x}{2}<1}\\{x>0}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1-x}{2}>1}\\{x<0}\end{array}\right.$
解得0<x<1,或x<-1,
故不等式的解集为(-∞,-1)∪(0,1).

点评 本题主要考查了利用函数的奇偶性和对称性求函数解析式的方法,以及不等式组的解法和对数的性质,体现了转化化归的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知sin($\frac{π}{3}$一α)=$\frac{1}{4}$,求sin($\frac{4π}{3}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}{|x|-1<0}\\{x^2-3x<0}\end{array}\right.$的解集是(  )
A.{x|0<x<1}B.{x|0<x<3}C.{x|-1<x<1}D.{x|-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知:a∈R,b∈R,若集合{a,$\frac{b}{a}$,1}={a2,a+b,0},则a2015+b2015的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知幂函数f(x)的图象过点(2,$\frac{1}{2}$),则f(4)的值是(  )
A.64B.4$\sqrt{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是R上的奇函数,且当x>0时f(x)=x(1-x),则当x<0时f(x)的解析式是f(x)=(  )
A.-x(x-1)B.-x(x+1)C.x(x-1)D.x(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.顶点在原点且以双曲线$\frac{{x}^{2}}{3}$-y2=1的右焦点为焦点的抛物线方程是y2=8x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{x,-1≤x<0}\\{{x}^{2},0≤x<1}\end{array}\right.$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$.则方程f(x)=g(x)在区间[-3,7]上的所有实数根之和最接近下列哪个数(  )
A.10B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)当x>3时,求函数y=$\frac{2{x}^{2}}{x-3}$的最小值.
(2)若x2-2ax+2≥0在R上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案