精英家教网 > 高中数学 > 题目详情
20.已知关于x的一次函数y=mx+n,设m∈{-1,1,2},n∈{-2,2},则函数y=mx+n是增函数的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{10}$D.$\frac{1}{2}$

分析 基本事件总数N=3×2=6,函数y=mx+n是增函数需要满足的条件是m>0,从而求出函数y=mx+n是增函数包含的基本事件个数,由此能求出函数y=mx+n是增函数的概率.

解答 解:∵关于x的一次函数y=mx+n,设m∈{-1,1,2},n∈{-2,2},
∴基本事件总数N=3×2=6,
函数y=mx+n是增函数需要满足的条件是m>0,
∴函数y=mx+n是增函数包含的基本事件个数M=2×2=4,
∴函数y=mx+n是增函数的概率p=$\frac{M}{N}=\frac{4}{6}=\frac{2}{3}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,PB⊥AB且AD=AB=BP=$\frac{1}{2}$BC.
(1)求证:CD⊥平面PBD;
(2)已知点Q在PC上,若AC与BD交于点O,且AP∥平面BDQ,求证:OQ∥平面APD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为45°,若E是PB的中点,则异面直线DE与PA所成角的余弦值为(  )
A.$\frac{{3\sqrt{10}}}{20}$B.$\frac{{\sqrt{10}}}{20}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若对于任意的x>0,不等式$\frac{x}{{x}^{2}+3x+1}$≤a恒成立,则实数a的取值范围为(  )
A.a≥$\frac{1}{5}$B.a>$\frac{1}{5}$C.a<$\frac{1}{5}$D.a≤$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现有清华、北大、上海交大三所大学的招生负责人各一人来我市宣讲2017年高考自主招生政策,我市四所重点中学必须且只能邀请其中一所大学的负责人,且邀请其中任何一所大学的负责人是等可能的.
(Ⅰ)求恰有两所重点中学邀请了清华招生负责人的概率;
(Ⅱ)设被邀请的大学招生负责人的个数为ξ,求ξ分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.甲、乙、丙三厂联营生产同一种产品,产品是哪个厂生产就在产品上盖哪个厂的厂名,如果是两个厂或三个厂联合生产,那么产品上就盖上两个厂或三个厂的厂名.今有一批产品,发现盖过甲厂、乙厂、丙厂的厂名的产品分别为18件、24件、30件,同时盖过甲、乙厂,乙、丙厂,丙、甲厂的产品,分别有12件、14件、16件.
①产品上盖有甲厂厂名没有盖乙厂厂名的产品共有6件;
②这批产品的总数最多有42件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|0<x<2},B={x|x2-1≤0},那么A∪B=(  )
A.{x|0<x≤1}B.{x|-1≤x<2}C.{x|-1≤x<0}D.{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},0≤x≤a}\\{lo{g}_{3}x,x>a}\end{array}\right.$,其中a>0
①若a=3,则f[f(9)]=$\sqrt{2}$;
②若函数y=f(x)-2有两个零点,则a的取值范围是[4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}中,a3=9,a8=29.
(1)求数列{an}的通项公式及前n项和Sn的表达式;
(2)记数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n项和为Tn,求Tn的值.

查看答案和解析>>

同步练习册答案