精英家教网 > 高中数学 > 题目详情
13.设sin(π-θ)=$\frac{1}{3}$,则cos2θ=(  )
A.±$\frac{4\sqrt{2}}{9}$B.$\frac{7}{9}$C.-$\frac{4\sqrt{2}}{9}$D.-$\frac{7}{9}$

分析 利用诱导公式求得sinθ的值,再利用二倍角公式求得cos2θ的值.

解答 解:∵sin(π-θ)=sinθ=$\frac{1}{3}$,则cos2θ=1-2sin2θ=1-2•$\frac{1}{9}$=$\frac{7}{9}$,
故选:B.

点评 本题主要考查利用诱导公式、二倍角公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知动点P到点($\frac{1}{2}$,0)的距离比它到直线x=-$\frac{5}{2}$的距离小2.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)记P点的轨迹为E,过点S(2,0)斜率为k1的直线交E于A,B两点,Q(1,0),延长AQ,BQ与E交于C,D两点,设CD的斜率为k2,证明:$\frac{{k}_{2}}{{k}_{1}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,8]上随机取一个x的值,执行如图的程序框图,则输出的y≥3的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,在边长为1的正方形OABC内任取一点P,用A表示事件“点P恰好取自由曲线$y=\sqrt{x}$与直线x=1及x轴所围成的曲边梯形内”,B表示事件“点P恰好取自阴影部分内”,则P(B|A)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若2x+y+k≥0恒成立,则直线2x+y+k=0被圆(x-1)2+(y-2)2=25截得的弦长的最大值为(  )
A.10B.2$\sqrt{5}$C.4$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{{e}^{x}}{x}-kx$(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是(  )
A.(0,2)B.(0,$\frac{{e}^{2}}{4}$)C.(0,e)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,B为点A关于原点的对称点,F为椭圆的左焦点,且AF⊥BF,若∠ABF∈[$\frac{π}{12}$,$\frac{π}{4}$],则该椭圆离心率的取值范围为(  )
A.[0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[0,$\frac{\sqrt{6}}{3}$]D.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={-1,0,1,2,3},N={x|x2-2x>0},则M∩N=(  )
A.{3}B.{2,3}C.{-1,3}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等比数列{an}的前n项和为Sn,已知a1=1,a1,S2,5成等差数列,则数列{an}的公比q=2.

查看答案和解析>>

同步练习册答案