精英家教网 > 高中数学 > 题目详情

【题目】已知直线是双曲线的一条渐近线,点都在双曲线上,直线轴相交于点,设坐标原点为.

1)求双曲线的方程,并求出点的坐标(用表示);

2)设点关于轴的对称点为,直线轴相交于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

3)若过点的直线与双曲线交于两点,且,试求直线的方程.

【答案】(1)(2)存在定点,其坐标为(3)

【解析】

1)求得双曲线的渐近线方程,可得,由题意可得,可得双曲线的方程,求出直线的方程,可令,求得的坐标;(2)求得对称点的坐标,直线方程,令,可得的坐标,假设存在,运用两直线垂直的条件:斜率之积为,结合在双曲线上,化简整理,即可得到定点;(3)设出直线的方程,代入双曲线的方程,运用韦达定理,由向量数量积的性质,可得向量的数量积为0,化简整理,解方程可得的值,检验判别式大于0成立,进而得到直线的方程.

解:(1)由已知,得,故双曲线的方程为

为直线AM的一个方向向量,

直线AM的方程为它与轴的交点为

2)由条件,得为直线AN的一个方向向量,

故直线AN的方程为它与轴的交点为

假设在轴上存在定点,使得,

即存在定点,其坐标为满足题设条件.

3)由知,以为邻边的平行四边形的对角线的长相等,故此四边形为矩形,从而

由已知,可设直线的方程为并设

则由

*

符合约束条件(*.

因此,所求直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥SABCD中,SA⊥底面ABCD,底面ABCD是平行四边形,E是线段SD上一点.

1)若ESD的中点,求证:SB∥平面ACE

2)若SAABAD2SC2,且DEDS,求二面角SACE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为正整数,若两个项数都不小于的数列满足:存在正数,当时,都有,则称数列是“接近的”.已知无穷等比数列满足,无穷数列的前项和为,且.

1)求数列通项公式;

2)求证:对任意正整数,数列是“接近的”;

3)给定正整数,数列(其中)是“接近的”,求的最小值,并求出此时的(均用表示).(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出共享单车后,又推出新能源分时租赁汽车.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:根据行驶里程数按1/公里计费;行驶时间不超过分时,按/分计费;超过分时,超出部分按/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 ()是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:

时间(分)

频数

将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为路段畅通”,表示3次租用新能源分时租赁汽车中路段畅通的次数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.

1)求椭圆的方程;

(2)设是椭圆上一点,为椭圆长轴上一点,求的最大值与最小值;

(3)设是椭圆外的动点,满足,点是线段与该椭圆的交点,点在线段上,并且满足,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是棱长为2的正方体的棱的中点.如图,以为坐标原点,射线分别是轴、轴、轴的正半轴,建立空间直角坐标系.

1)求向量的数量积;

2)若点分别是线段与线段上的点,问是否存在直线平面?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式为,其中.

(1)试写出一组的值,使得数列中的各项均为正数.

(2),数列满足,且对任意的(),均有,写出所有满足条件的的值.

(3),数列满足,其前项和为,且使()有且仅有组,中有至少个连续项的值相等,其它项的值均不相等,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程为常数)有解,则解得个数一定是偶数;(4是偶函数且有最小值.其中假命题的序号是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.

(1)求出,,的值,并求出及数列的通项公式;

(2)设,求数列的前项和;

(3)设,在数列中取出()项,按照原来的顺序排列成一列,构成等比数列,若对任意的数列,均有,试求的最小值.

查看答案和解析>>

同步练习册答案