精英家教网 > 高中数学 > 题目详情

【题目】下列各组中的两个函数是同一函数的有几组

(1)y1=y2=x–5; (2)y1=y2=

(3)fx)=xgx)= (4)fx)=Fx)=x

A. 0组 B. 1组 C. 2组 D. 组3

【答案】B

【解析】

两个函数表示同一函数要满足:定义域相同、对应法则相同(当然值域也相同).依次判断两个函数的这些量是否相同即可.

对于(1),y1=x≠–3),与y2=x–5(x∈R)的定义域不相同,不是同一函数;对于(2),y1=x≥1),与y2=x≤–1x≥1)的定义域不相同,不是同一函数;对于(3),fx)=xx∈R),与gx)==|x|(x∈R)的对应关系不相同,不是同一函数;对于(4),fx)==xx∈R),与Fx)=x

x∈R)的定义域相同,对应关系也相同,是同一函数.综上,是同一函数的只有1组,是(4).

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,且
(1)求cos2θ与 的值;
(2)若 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f( )=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f( )=﹣ ,α∈( ,π),求sin(α+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是(
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为圆的圆心.

(1)求抛物线的标准方程;

(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.

【答案】(1);(2)8.

【解析】试题分析:(1)先求圆心得焦点,根据焦点得抛物线方程(2)先根据点斜式得直线方程,与抛物线联立方程组,利用韦达定理以及弦长公式得弦长.

试题解析:(1)圆的标准方程为,圆心坐标为

即焦点坐标为,得到抛物线的方程:

(2)直线 ,联立,得到

弦长

型】解答
束】
19

【题目】已知函数在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x﹣4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过原点且与直线相切于点

(Ⅰ)求圆的方程;

(Ⅱ)在圆上是否存在两点关于直线对称,且以线段为直径的圆经过原点?若存在,写出直线的方程;若不存在,请说明理由

查看答案和解析>>

同步练习册答案