A. | $\frac{3}{4}$ | B. | 2$\sqrt{2}$-3 | C. | 2$\sqrt{2}$ | D. | 0 |
分析 化简sinx+$\frac{2}{3+sinx}$=sinx+3+$\frac{2}{3+sinx}$-3,可得0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,从而求得f(x)的最小值为0,得到使f(x0)≥m成立的m的最大值.
解答 解:∵sinx+$\frac{2}{3+sinx}$=sinx+3+$\frac{2}{3+sinx}$-3,
∵-1≤sinx≤1,
∴2≤sinx+3≤4,
∴3≤sinx+3+$\frac{2}{3+sinx}$≤$\frac{9}{2}$,
∴0≤sinx+3+$\frac{2}{3+sinx}$-3≤$\frac{3}{2}$,
∴对任意的t∈R,f(x)的最小值为0.
∴使f(x0)≥m成立的m的最大值是0.
故选:D.
点评 本题考查了三角函数的单调性及分段函数的应用,同时考查了正弦函数的性质及整体思想与分类讨论的思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4π}{3}$ | B. | $\frac{8π}{3}$ | C. | $\frac{{5\sqrt{5}π}}{6}$ | D. | $\sqrt{5}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com