精英家教网 > 高中数学 > 题目详情

【题目】将圆x2+y2=1上每一点的纵坐标不变,横坐标变为原来的 ,得曲线C. (Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:3x+y+1=0与C的交点为P1、P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

【答案】解:(Ⅰ)∵将圆x2+y2=1上每一点的纵坐标不变,横坐标变为原来的 ,得曲线C. ∴由坐标变换公式 ,得x=3x′,y=y′,
代入x2+y2=1中,得9x'2+y'2=1,
故曲线C的参数方程为 .(5分)
(Ⅱ)联立 ,得
由题知,P1(﹣ ,0),P2(0,﹣1),P1 P2线段中点M(﹣ ,﹣ ),
= =﹣3,故P1 P2线段中垂线的方程为y+ = (x+ ),(8分)
即3x﹣9y﹣4=0,即极坐标方程为3ρcosθ﹣9ρsinθ﹣4=0.(10分)
【解析】(Ⅰ)由坐标变换公式得x=3x′,y=y′,代入x2+y2=1中,得9x'2+y'2=1,由此能求出曲线C的参数方程.(Ⅱ)联立 ,得P1(﹣ ,0),P2(0,﹣1),由此能求出过线段P1P2的中点且与l垂直的直线的极坐标方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等差数列{an}中,其前n项和为Sn , 且 ,等比数列{bn}中,其前n项和为Tn , 且 ,(n∈N*
(1)求an , bn
(2)求{anbn}的前n项和Mn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中点,CC1=8.
(1)求证:平面AB1M⊥平面A1ABB1
(2)求平面AB1M与平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C的对边分别为a、b、c,且2asinB= b.
(1)求角A的大小;
(2)若0<A< ,a=6,且△ABC的面积S= ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若 ,则实数m的取值范围是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3 x2+logax,(a>0且a≠1)为定义域上的增函数,f'(x)是函数f(x)的导数,且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)设函数 ,且g(x1)+g(x2)=0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学上称函数y=kx+b(k,b∈R,k≠0)为线性函数.对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x﹣x0).利用这一方法, 的近似代替值(
A.大于m
B.小于m
C.等于m
D.与m的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,A,B,C角所对的边分别为a,b,c,且 = sinC.
(1)求∠C;
(2)若 =2,求△ABC面积S的最大值.

查看答案和解析>>

同步练习册答案