精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:x2+(y﹣1)2=5,直线l:mx﹣y+1﹣m=0.
(1)求证:对m∈R,直线l与圆C总有有两个不同的交点A、B;
(2)求弦AB的中点M的轨迹方程.

【答案】
(1)证明:∵直线l:mx﹣y+1﹣m=0过定点P(1,1),而点P(1,1)在圆内,

∴直线l与圆C总有两个不同交点


(2)解:当M与P不重合时,连结CM、CP,则CM⊥MP,

又因为|CM|2+|MP|2=|CP|2

设M(x,y)(x≠1),则x2+(y﹣1)2+(x﹣1)2+(y﹣1)2=1,

化简得:x2+y2﹣x﹣2y+1=0(x≠1)

当M与P重合时,x=1,y=1也满足上式.

故弦AB中点的轨迹方程是x2+y2﹣x﹣2y+1=0.


【解析】(1)利用直线l:mx﹣y+1﹣m=0过定点P(1,1),而点P(1,1)在圆内,判定直线l与圆C总有两个不同交点A、B;(2)设出弦AB中点M,用弦的中点与圆心连线与割线垂直,求出轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右前三个小组的频率分别为 0.1,0.3,0.4,第一小组的频数为 5.

(1)求第四小组的频率;
(2)若次数在 75 次以上(含75 次)为达标,试估计该年级学生跳绳测试的达标率.
(3)在这次测试中,一分钟跳绳次数的中位数落在哪个小组内?试求出中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正实数,且 ,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为( )
A.
B.(﹣∞,3]
C.(﹣∞,6]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C: =1,设R(x0 , y0)是椭圆C上的任一点,从原点O向圆R:(x﹣x02+(y﹣y02=8作两条切线,分别交椭圆于点P,Q.

(1)若直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,并记为k1 , k2 , 求证:2k1k2+1=0;
(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数﹒图中三角形阴影部分的三个顶点为(0,0)、(4,0)和(0,4).

(1)若点P(a,b)落在如图阴影所表示的平面区域(包括边界)的事件记为A,求事件A的概率;
(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率P最大,求m和P的值﹒

查看答案和解析>>

同步练习册答案