精英家教网 > 高中数学 > 题目详情
11.设函数$f(x)=\left\{\begin{array}{l}{log}_{\frac{1}{2}}^{(-x)},x<0\\{log}_{2}^{x},x>0\end{array}\right.$,若f(a)>f(-a),则a的范围为(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

分析 通过讨论a的范围,结合对数函数的性质判断a的范围即可.

解答 解:①当a>0时-a<0,则由f(a)>f(-a),
可得log2a>${log}_{\frac{1}{2}}$(a)=-log2a,
∴log2a>0,
∴a>1
②当a<0时-a>0,则由f(a)>f(-a),
可得${log}_{\frac{1}{2}}$(-a)>log2(-a),
∴log2(-a)<0,
∴0<-a<1,
∴-1<a<0,
综上a的取值范围为(-1,0)∪(1,+∞),
故选:B.

点评 本题考查了对数函数的性质,考查函数的单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知空间中的直线m、n和平面α,且m⊥α.则“m⊥n”是“n?α”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=log2x的导数为$\frac{1}{xln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=|x|(1+ax),设关于x的不等式f(x+a)>f(x)对任意x∈R恒成立,则实数a的取值范围是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,则P的元素有(  )个.
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2x,g(x)=-$\frac{3x-1}{x}$,则f(x)•g(x)=2-6x,(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对任意x∈R,函数y=(k2-k-2)x2-(k-2)x-1的图象始终在x轴下方,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2x2-(m2+m+1)x+15,g(x)=m2x-m,其中m∈R.
(1)若f(x)+g(x)+m≥0,对x∈[1,4)恒成立,求实数m的取值范围;
(2)设函数$F(x)=\left\{{\begin{array}{l}{g(x),x≥0}\\{f(x),x<0}\end{array}}\right.$
①对任意的x1>0,存在唯一的实数x2<0,使其F(x1)=F(x2),求m的取值范围;
②是否存在求实数m,对任意给定的非零实数x1,存在唯一非零实数x2(x1≠x2),使其F(x2)=F(x1),若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案