精英家教网 > 高中数学 > 题目详情

【题目】类似于平面直角坐标系,定义平面斜坐标系:设数轴的交点为,与轴正方向同向的单位向量分别是,且的夹角为,其中,由平面向量基本定理:对于平面内的向量,存在唯一有序实数对,使得,把叫做点在斜坐标系中的坐标,也叫做向量在斜坐标系中的坐标,记为,在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如时,方程表示斜坐标系内一条过点,且方向向量为的直线.

1)若,求

2)若,已知点和直线

①求的一个法向量;

②求点到直线的距离.

【答案】1;(2)①法向量;②.

【解析】

1)利用定义求出

2)①先求出l的方向向量为,由得法向量

②利用向量投影公式求解即可

1)由已知

,且

=

2)①直线l的方程可变形为:,直线l的方向向量为

设法向量为,由得,

a=﹣7,则b5

②取直线l上一点B02),则,所求为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数a为实常数).

1)若,作函数的图象并写出单调减区间;

2)当时,设在区间上的最小值为,求的表达式;

3)当时对于函数和函数,若对任意的,总存在使成立,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,若,求的取值范围;

2)若定义在上的奇函数满足,且当,求上的解析式;

3)对于(2)中的,若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位,得到的图象关于轴对称,则( )

A. 函数的周期为 B. 函数图象关于点对称

C. 函数图象关于直线对称 D. 函数上单调

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面.

(Ⅰ)求证:平面

(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)解不等式

(2)若函数,其中为奇函数,为偶函数,若不等式对任意的恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,.

1)证明:

2)求平面与平面所成锐二面角的余弦值;

3)点是线段上的动点,当直线所成的角最小时,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2+bx+ca0),且f1

1)求证:函数fx)有两个不同的零点;

2)设x1x2是函数fx)的两个不同的零点,求|x1x2|的取值范围;

3)求证:函数fx)在区间(02)内至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,分别为ABC所对的边,且

(1)确定角C的大小;

(2)若c,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案