精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x
2
 
3
-
y
2
 
2
=1的
渐近线与圆E:(x-
5
)
2
 
+
y
2
 
=
r
2
 
(r>0)
相切,则r=
2
2
分析:由双曲线解析式找出渐近线方程,整理为一般形式,由渐近线与圆E相切,得到圆心到直线的距离d=r,利用点到直线的距离公式求出圆心到渐近线的距离d,即为所求圆的半径r.
解答:解:双曲线的解析式为y=±
2
3
x=±
6
3
x,即
6
x±3y=0,
∵圆心(
5
,0)到渐近线的距离d=
30
6+9
=
2

则圆的半径r=
2

故答案为:
2
点评:此题考查了直线与圆的位置关系,涉及的知识有:双曲线的性质,点到直线的距离公式,以及圆的标准方程,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2
4
=1,过点P(1,1)作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l共有(  )
A、1条B、2条C、3条D、4条

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2
b2
=1(b>0),过点M(1,1)作直线l交双曲线C于A、B两点,使得M是线段AB的中点,则实数b取值范围为(  )
A、(1,
2
B、(-1,0)∪(0,1)
C、(0,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生在(1)(2)中任选一题作答,每小题12分.如都做,按所做的第(1)题计分.
(1)如图,在△ABC中,AB=AC,∠C=72°,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连接B、D,若BC=
5
-1
,求AC的长.
(2)已知双曲线C:x2-y2=2,以双曲线的左焦点F为极点,射线FO(O为坐标原点)为极轴,点M为双曲线上任意一点,其极坐标是(ρ,θ),试根据双曲线的定义求出ρ与θ的关系式(将ρ用θ表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-y2=1的左右焦点分别为F1、F2,P是C上一点,∠F1PF2=60°,
①求F1、F2的坐标;
②求双曲线的准线方程及离心率;
③求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:x2-
y2b2
=1(b>0,b≠1)
的左右焦点为F1,F2,过点F1的直线与双曲线C左支相交于A,B两点,若|AF2|+|BF2|=2|AB|,则|AB|为
 

查看答案和解析>>

同步练习册答案