精英家教网 > 高中数学 > 题目详情
12.如图所示,已知P是?ABCD所在平面外一点,M,N分别是AB,PC的中点,平面PAD∩平面PBC=l.
求证:(1)l∥BC.
(2)MN∥平面PAD.

分析 (1)根据BC∥AD,我们可以知道BC∥平面PAD,由于平面PBC∩平面PAD=l,可以证得BC∥l;
(2)取CD的中点Q,连接MQ、NQ,可证平面MNQ∥平面PAD,再由面面平行的性质得线面平行.

解答 证明:(1)∵BC∥AD,BC?面PAD,∴BC∥面PAD,
∵面PBC∩面PAD=l,∴BC∥l.(6分)
(2)取CD的中点Q,连结NQ,MQ,
则NQ∥PD,MQ∥AD,又∵NQ∩MQ=Q,PD∩AD=D,
∴平面MNQ∥平面PAD.又∵MN?平面MNQ,
∴MN∥平面PAD.     (12分)

点评 本题以四棱锥为载体,考查线线平行,线面平行,证题的关键是合理运用线面平行的判定及性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=tanx(-$\frac{π}{4}$≤x≤$\frac{π}{4}$且x≠0)的值域是(  )
A.[-1,1]B.[-1,0)∪(0,1]C.(-∞,1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=sin(ωx+φ)(ω<0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,内角A,B,C满足2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,且其外接圆的半径为1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次测验中成绩的均值分别为(  )
A.18,5B.18,25C.90,25D.90,5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.棱长为4的正方体的内切球的表面积为(  )
A.B.12πC.16πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某科技小组有女同学2名、男同学x名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=tan($\frac{x}{2}$-$\frac{π}{3}$)的定义域、单调区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.方程|$\frac{2x+3}{x+1}$|=(x+2)2 的解的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(1)若直线AB过焦点F,求抛物线C的方程;
(2)若QA⊥QB,求p的值.

查看答案和解析>>

同步练习册答案