精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,底面ABCD是直角梯形,ABCDBCCD,侧面PAB为等边三角形,ABBC2CD2

(Ⅰ)证明:ABPD

(Ⅱ)若PD2,求直线PC与平面PAB所成角的正弦值.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】

(Ⅰ)取的中点,连接,可得,再由线面垂直的判定可得平面,进一步得到.
(Ⅱ)由,得,再由已知求得,,则点C到平面的距离等于点到平面的距离,证明平面⊥平面,过为垂足,可得平面,然后求解三角形得直线与平面所成角的正弦值.

(Ⅰ)证明:取AB的中点E,连接DEPE,则ABDEABPE

DEPEE,∴AB⊥平面PDE

ABPD

(Ⅱ)解:∵ABCDABPD,∴CDPD

CD1PD2,故PC

由已知可得CD∥平面PAB
∴点C到平面PAB的距离等于点D到平面PAB的距离.

AB⊥平面PDE,∴平面PAB⊥平面PDE
DDHPEH为垂足,

DH⊥平面PAB,∴PEDE2

PD2,∴DH

PC与平面PAB所成角为θ,则sinθ

∴直线PC与平面PAB所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.

1)写出C的参数方程;

2)设直线C的交点为,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台的上端点P处分别向水池内的三个不同方向建水滑道,水滑道的下端点在同一条直线上,平分,假设水滑梯的滑道可以看成线段,均在过C且与垂直的平面内,为了滑梯的安全性,设计要求.

(1)求滑梯的高的最大值;

(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计,求该滑梯装置(即图(2)中的几何体)的体积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20168月巴西里约热内卢举办的第31届奥运会上,乒乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲、乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如下表:

出场顺序

1

2

3

4

5

获胜概率

若甲队横扫对手获胜(即30获胜)的概率是,比赛至少打满4场的概率为.

1)求的值;

2)求甲队获胜场数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)=axexlnxx

(Ⅰ)若fx)有两个不同的零点,求实数a的取值范围;

(Ⅱ)已知a1,若对任意的x0,均有fx)>cx22x+1成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的函数,当时,取极大值,且函数的图象关于原点对称.

1)求的表达式;

2)试在函数的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在上;

3)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案