精英家教网 > 高中数学 > 题目详情

【题目】某同学用“五点法”画函数 在某一周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(Ⅰ)请将上表数据补充完整,函数的解析式(直接写出结果即可)

(Ⅱ)求函数的单调递增区间;/span>

(Ⅲ)求函数在区间上的最大值和最小值.

【答案】(1)(2)单调递增区间为 (3)最小值为-2,最大值为1.

【解析】试题分析:Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式

Ⅱ)利用正弦函数的单调性,求得函数f(x)的单调递增区间

因为,所以得: .所以,当时,求得在区间上的最小值时,求得在区间上的最大值

试题解析:

(Ⅰ)

0

0

2

0

0

根据表格可得,A=2, 再根据五点法作图可得 故解析式为:

(Ⅱ) 函数的单调递增区间为 .

(Ⅲ)因为,所以,得: .所以,当时, 在区间上的最小值为-2.当时, 在区间上的最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是两条不同的直线, 是三个不同的平面,下面说法正确的是

A. B.

C. D. ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.

(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;

.

(2)设的定义域为,已知的一个等值域变换,且函数的定义域为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面 为棱的中点.

(1)求证:

(2)试判断与平面是否平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线.

(1)若直线轴上的截距为-2,求实数的值,并写出直线的截距式方程;

(2)若过点且平行于直线的直线的方程为: ,求实数的值,并求出两条平行直线之间的距离.

查看答案和解析>>

同步练习册答案