精英家教网 > 高中数学 > 题目详情

【题目】已知为数列的前项和,,若关于正整数的不等式的解集中的整数解有两个,则正实数的取值范围为( )

A. B. C. D.

【答案】A

【解析】分析:由2Sn=(n+1)an,n≥2时,2Sn﹣1=nan﹣1,则2an=2(Sn﹣Sn﹣1),整理得: ,则,可得:an=n.不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,0<n≤2t,关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,即可得出正实数t的取值范围.

详解:∵a1=1,2Sn=(n+1)an

∴n≥2时,2Sn﹣1=nan﹣1

∴2an=2(Sn﹣Sn﹣1)=(n+1)an﹣nan﹣1,整理得:

∴an=n.

不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,

∴0<n≤2t,

关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,

可知n=1,2.

∴1≤t<

故答案为:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若,函数的极大值为,求实数的值;

(Ⅱ)若对任意的 上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中, 分别为角所对的边,且

)确定角的大小.

)若,且的面积为,求的值.

【答案】;(

【解析】试题分析:(1由正弦定理可知 所以;(2)由题意, ,得到

试题解析:

,∴

型】解答
束】
17

【题目】已知等差数列满足:.的前n项和为.

)求

)若 ,),求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点.直线交于两点,点的左焦点.

(1)求椭圆的方程;

(2)若过点且不与轴重合,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,,点满足,记点的轨迹为.

(1)求轨迹的方程;

(2)若直线过点且与轨迹交于两点.

(i)无论直线绕点怎样转动,在轴上总存在定点,使恒成立,求实数的值.

(ii)在(i)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若是函数的一个极值点,求实数的值.

)设,当时,函数的图象恒不在直线的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:

所成角的正切值是

④平面平面

⑤直线与平面所成角为30°.

其中正确的有________.(填写你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:当 时,

(2)若关于的方程有两个不相等的实根,求的取值范围.

查看答案和解析>>

同步练习册答案