精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆有相同的焦点,点分别是椭圆的右、右顶点,若椭圆经过点
(1)求椭圆的方程;
(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;
(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.
(Ⅰ).(Ⅱ).(Ⅲ)存在定点

试题分析:(Ⅰ)依题意,
所以椭圆的方程为
代入D点坐标,解得,由此得
所以椭圆的方程为.                     (4分)
(Ⅱ)由(Ⅰ)知,故圆的方程为
则由知,点在圆上,
因为,所以切线的斜率为
故所求切线的方程为
.                           (8分)
(Ⅲ)设,假设存在点满足题意,

在圆C上,
化简得
因为该式对任意的恒成立,则解得
故存在定点对于直线上的点及圆上的任意一点使得成立.                           (12分)
点评:从近几年课标地区的高考命题来看,解析几何综合题主要考查直线和圆锥曲线的位置关系以及范围、最值、定点、定值、存在性等问题,直线与多种曲线的位置关系的综合问题将会逐步成为今后命题的热点,尤其是把直线和圆的位置关系同本部分知识的结合,将逐步成为今后命题的一种趋势.近几年高考题中经常出现了以函数、平面向量、导数、数列、不等式、平面几何、数学思想方法等知识为背景,综合考查运用圆锥曲线的有关知识分析问题、解决问题的能力,试题风格每年都有所创新,但总体稳定.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过抛物线焦点的直线交抛物线于A、B两点,则的最小值为
A.            B.           C.         D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求
(3)在(2)的条件下,设=为数列{}的前项和,若存在正整数
使得不等式成立,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面上点与两个定点的距离之比等于5.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知点P,曲线C的参数方程为φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与直线C的两个交点为AB,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1,F2是离心率为的椭圆
C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过抛物线的焦点F的直线依次交抛物线及其准线于点A、B、C,若|BC |=2|BF|,且|AF|=3,则抛物线的方程是     

查看答案和解析>>

同步练习册答案