精英家教网 > 高中数学 > 题目详情
2.等比数列{an}中,a1+a4=20,a2+a5=40,求它的前6项和s6

分析 利用等比数列的通项公式及其前n项和公式即可得出.

解答 解:设等比数列{an}的公比为q,
∵a1+a4=20,a2+a5=40,∴q(a1+a4)=20q=40,解得q=2,
${a}_{1}+{a}_{1}×{2}^{3}$=20,解得a1=$\frac{20}{9}$.
∴S6=$\frac{\frac{20}{9}×({2}^{6}-1)}{2-1}$=140.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正△ABC内一点D,满足∠ADC=150°.证明:由线段AD、BD、CD为边构成的三角形是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是②④(写出所有正确命题的编号).
①当0<CQ<$\frac{1}{2}$时,S为平行四边形;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当CQ=$\frac{3}{4}$时,S与C1D1的交点R满足C1R=$\frac{1}{4}$
④当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{x-1}$+lg(x+1)的定义域为(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线f(x)=x3+$\sqrt{x}$在点(1,2)处的切线方程为(  )
A.4x-y-2=0B.7x-2y-3=0C.3x-y-1=0D.5x-y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2$\sqrt{3}$cosωx+sinωx)sinωx-sin2($\frac{π}{2}$+ωx)(ω>0),且函数y=f(x)的图象的一个对称中心到最近的对称轴的距离为$\frac{π}{4}$.
(Ⅰ)求ω的值和函数f(x)的单调递增区间;
(Ⅱ) 求函数f(x)在区间$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是定义在(0,+∞)上的增函数,且对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,已知f(4)=5.
(Ⅰ)求f(2)的值;
(Ⅱ)解不等式f(m-2)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)
(1)若b=2a,a<0写出函数f(x)的单调递减区间;
(2)若a=1,c=2,若存在实数b使得函数f(x)在区间(0,2)内有两个不同的零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案