精英家教网 > 高中数学 > 题目详情
16.若函数$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$,则f(x)(  )
A.图象关于$x=\frac{π}{3}$对称
B.图象关于$(\frac{2π}{3},0)$对称
C.在$[\frac{2π}{3},\frac{8π}{3}]$上单调递减
D.单调递增区间是$[2kπ-\frac{4π}{3},2kπ+\frac{2π}{3}](k∈Z)$

分析 根据正弦函数的图象和性质依次判断即可.

解答 解:函数$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$,
对于A:函数的对称轴方程为:$\frac{1}{2}x+\frac{π}{6}$=$kπ+\frac{π}{2}$,得x=$2kπ+\frac{2π}{3}$,(k∈Z),A不对.
对于B:当x=$\frac{2π}{3}$时,即f($\frac{2π}{3}$)=sin($\frac{1}{2}×\frac{2π}{3}+\frac{π}{6}$)=1,∴图象不关于$(\frac{2π}{3},0)$对称.B不对.
对于C:由$2kπ+\frac{π}{2}≤\frac{1}{2}x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,可得:$4πk+\frac{2π}{3}$≤x≤4kπ$+\frac{8π}{3}$,(k∈Z),C对.
对于D:由$2kπ-\frac{π}{2}≤\frac{1}{2}x+\frac{π}{6}≤2kπ+\frac{π}{2}$,可得:$4πk-\frac{4π}{3}$≤x≤4kπ$+\frac{2π}{3}$,(k∈Z),D不对.
故选C.

点评 本题主要考查了正弦函数的图象及性质的综合运用和计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知两定点A(-2,0)和B(2,0),动点P(x,y)在直线l:y=x+4上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.月饼是久负盛名的中国传统小吃之一,月饼圆又圆,又是合家分吃,象征着团圆和睦,在中秋这一天是必食之品.某食品公司在中秋佳节推出中式月饼,港式月饼,欧式月饼三个系列,该食品公司对其全部42名内部员工实行优惠,对中秋节当天员工购买公司“月饼”情况进行统计,结果如下:(所有员工都参加了购买,且只购买一种)
其中购买欧式月饼的40岁以下员工占全部员工的三分之一.
  中式月饼 港式月饼 欧式月饼
 40岁以上(含40岁)员工人数 10 y 4
 40岁以下员工人数 2 6 x
(1)求x,y的值;
(2)能否在犯错误的概率不超过1%的情况下认为员工购买“欧式月饼”与年龄有关?
(3)已知甲、乙两位员工购买的是“欧式月饼”,依照购买的三个系列分类,按分层抽样的方法从员工中随机抽取7人,记甲、乙2人中被抽取到的人数为X,求X的分布列及数学期望.
参考数据:
P(K2≥k0)  0.10.01 0.01 
 k0 2.706 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$lg2+lg5-\root{4}{2}×{8^{0.25}}-{2017^0}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2+x-2<0},B={x|2x>1},则A∩(∁UB)=(  )
A.(0,1)B.(-2,0)C.(-2,0]D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tan α=$\frac{2}{3}$,求下列各式的值:
(1)$\frac{cosα-sinα}{cosα+sinα}$+$\frac{cosα+sinα}{cosα-sinα}$;
(2)$\frac{1}{sinαcosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为(  )
A.7B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在(0,+∞)上的单调函数f(x),对任意x∈(0,+∞),f[f(x)-log2x]=3成立,若方程f(x)-f'(x)=2的解在区间(k,k+1)(k∈Z)内,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求值.
(1)已知$tanα=\sqrt{2}$,求1+sin2α+cos2α的值;

(2)求:$\frac{{2sin{{50}°}+sin{{80}°}(1+\sqrt{3}tan{{10}°})}}{{\sqrt{1+sin{{100}°}}}}$的值.

查看答案和解析>>

同步练习册答案