精英家教网 > 高中数学 > 题目详情
19.已知点P(tanα,-tanα)在函数y=x-1上,求下列各式的值:
(1)求tanα的值;
(2)$\frac{1+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$.

分析 (1)利用点P(tanα,-tanα)在函数y=x-1上,求tanα的值;
(2)弦化切代入计算,求出$\frac{1+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$.

解答 解:(1)∵点P(tanα,-tanα)在函数y=x-1上,
∴-tanα=tanα-1,
∴tanα=$\frac{1}{2}$;
(2)$\frac{1+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$=$\frac{ta{n}^{2}α+2tanα+1}{ta{n}^{2}α-1}$=$\frac{\frac{1}{4}+1+1}{\frac{1}{4}-1}$=-$\frac{11}{3}$.

点评 本题考查函数知识,考查三角函数值的计算,正确弦化切是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若Sn是等差数列{an}的前n项和,且$\frac{S_8}{8}=\frac{S_6}{6}+10$,则$\lim_{n→∞}\frac{S_n}{n^2}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合A={x|y=lg(x-1)},$B=\left\{{y|y=}\right.x+\frac{1}{x},x>0\left.{\;}\right\}$,则A∩B=(  )
A.(0,+∞)B.(2,+∞)C.D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正项等比数列{an}中,a2=3,a8=27,则该数列第5项a5为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C过点P(2,2$\sqrt{2}$),且与椭圆$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{13}$=1有相同的焦点.
(1)求椭圆C的标准方程;
(2)若椭圆C上存在A、B两点关于直线l:y=x+m对称,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.点到A(12,16)的距离等于它到点B(3,4)的距离的2倍,求该动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算下列几个式子:①tan25°+tan35°+$\sqrt{3}$tan25°tan35°,②2(sin35°cos25°+sin55°cos65°),③$\frac{1+tan15°}{1-tan15°}$④$\frac{tan\frac{π}{3}}{1-ta{n}^{2}\frac{π}{3}}$,结果为$\sqrt{3}$的是(  )
A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x-2a|-|x-5|,且对于任意x∈R都有f(x)≤1恒成立
(I)求a的取值范围;
(Ⅱ)若0<b<1,求证:|loga(1-b)|>|loga(1+b)|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),且焦距为2,直线l交椭圆于E、F两点(E、F与A点不重合),且满足AE⊥AF.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)O为坐标原点,若点P满足2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求直线AP的斜率的取值范围.

查看答案和解析>>

同步练习册答案