(本小题满分12分) 已知直线L:y=x+1与曲线C:交于不同的两点A,B;O为坐标原点。
(1)若,试探究在曲线C上仅存在几个点到直线L的距离恰为?并说明理由;
(2)若,且a>b,,试求曲线C的离心率e的取值范围。
(1)在曲线C上存在3个点到直线L的距离恰为(2)
【解析】
试题分析:(1)在曲线C上存在3个点到直线L的距离恰为。
设,由得,
2分
又点A,B在直线L上,得,,代入上式化简得
4分
由
由 6分
所以,于是,这时曲线C表示圆
,O到直线L的距离d=,即有3个点 8分
(2)因为a>b,所以曲线C为焦点在x轴上的椭圆
由,所以,
又,, 9分
由(1)得,,代入上式整理得
,
可得
而
12分
考点:直线与椭圆相交,直线与圆相交的弦长距离问题及椭圆离心率范围的求解
点评:第一问由直线与圆锥曲线相交首先利用韦达定理确定了曲线的特点(为圆)进而转化为求圆上的点到直线的距离,第二问求离心率范围,将离心率求解函数式用已知中的变量a表示,转换为求函数值域
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com