精英家教网 > 高中数学 > 题目详情

定义在R上的奇函数f(x)满足f(x+4)=f(x),则f(2012)=


  1. A.
    -1
  2. B.
    1
  3. C.
    0
  4. D.
    2
C
分析:由题意易得f(0)=0,函数的周期为4,故可得f(2012)=f(503×4)=f(0),进而可得答案.
解答:∵f(x)为定义在R上的奇函数,
∴对任意x都有f(-x)=-f(x)成立,
取x=0代入可得f(0)=0,
而由f(x+4)=f(x)可知函数f(x)的周期为4,
故f(2012)=f(503×4)=f(0)=0
故选C
点评:本题考查函数的周期性和奇偶性,得出函数的周期和f(0)=0是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案