已知||=3,=(1,2),且∥,则的坐标为
A.(,) B.(-,-)
C.(,-) D.(,)或(-,-)
科目:高中数学 来源:新课标教材全解高中数学人教A版必修1 人教A版 题型:013
已知A={y|y=x2-4x+3,x∈R},B={y|y=x-1,x∈R},则A∩B是
A.{y|y=-1或0}
B.{x|x=0或1}
C.{(0,-1),(1,0)}
D.{y|y≥-1}
查看答案和解析>>
科目:高中数学 来源:山东省临清三中2012届高三12月调研统一测试数学试题 题型:044
已知{an}是公差为d的等差数列,它的前n项和为Sn,等比数列{bn}的前n项和为Tn·S4=2S2+4,b2=,T2=.
(1)求公差d的值;
(2)若对任意的n∈N*,都有Sn≥S8成立,求a1的取值范围;
(3)若a1=,判别方程Sn+Tn=2012是否有解?说明理由.
查看答案和解析>>
科目:高中数学 来源:2012年北师大版高中数学必修1 1.3集合的基本运算练习卷(解析版) 题型:选择题
已知A={(x,y)|x+y=3},B={(x,y)|x-y=1},则A∩B= ( )
A.{2,1} B.{x=2,y=1}
C.{(2,1)} D.(2,1)
查看答案和解析>>
科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com