精英家教网 > 高中数学 > 题目详情
已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0.
(Ⅰ)求f(0);
(Ⅱ)判断函数的奇偶性,并证明之;
(Ⅲ)解不等式f(a-4)+f(2a+1)<0.
分析:(1)利用赋值法:取x=y=0 则可求f(0)
(2)令y=-x,代入已知可得f[x+(-x)]=f(x)+f(-x)=f(0)=0,可判断
(3)先判断函数的单调性,然后由f(x)是R上的单调性及不等式f(a-4)+f(2a+1)<0可得关于a的不等式,可求
解答:(1)解:取x=y=0 则f(0)=2f(0)
∴f(0)=0
(2)f(x)是奇函数
证明:对任意x∈R,取y=-x;则f[x+(-x)]=f(x)+f(-x)=f(0)=0 
即f(-x)=-f(x)∴f(x)是R上的奇函数
(3)任意取x1,x2∈R,x1<x2,则x2=x1+△x (其中△x>0 )
∴f(x2)=f(x1+△x)=f(x1)+f(△x) 
∴f(x2)-f(x1)=f(△x)>0 
即f(x2)>f(x1) 
∴f(x)是R上的增函数对于不等式f(a-4)+f(2a+1)<0;∴f(2a+1)<-f(a-4)=f(4-a) 
∴2a+1<4-a 
即a<1
点评:本题主要考查了利用赋值法求解函数的函数值,判断函数的奇偶性、单调性及利用单调性求解不等式等函数知识的综合应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b∈R,向量
e1
=(x,1),
e2
=(-1,b-x),函数f(x)=a-
1
e1
e2
是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

24、已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a、b∈R,向量数学公式=(x,1),数学公式=(-1,b-x),函数f(x)=a-数学公式是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008年11月北京市北大附中高中高一(上)课改数学模块水平监测(必修1)(解析版) 题型:解答题

已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x3.271.57-0.61-0.590.260.42-0.35-0.564.25
y-101.63-10.040.070.030.210.20-0.22-0.03-226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

已知a、b∈R,向量=(x,1),=(-1,b-x),函数f(x)=a-是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

同步练习册答案