【题目】如图,在三棱锥中,底面ABC,点D,E分别为棱PA,PC的中点,M是线段AD的中点,N是线段BC的中点,,.
Ⅰ求证:平面BDE;
Ⅱ求直线MN到平面BDE的距离;
Ⅲ求二面角的大小.
【答案】Ⅰ见解析;Ⅱ;Ⅲ
【解析】
Ⅰ以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明平面BDE.
Ⅱ求出0,,利用向量法得直线MN到平面BDE的距离.
Ⅲ求出平面BDE的法向量和平面DEP的法向量,利用向量法能求出二面角的大小.
Ⅰ在三棱锥中,底面ABC,点D,E分别为棱PA,PC的中点,
M是线段AD的中点,N是线段BC的中点,,
.
以A为原点,AB为x轴,AC为y轴,AP为z轴,
建立空间直角坐标系,
0,,0,,4,,
2,,0,,0,,
2,,
2,,0,,
2,,
设平面BDE的法向量y,,
则,取,得0,,
,平面BDE,
平面BDE.
Ⅱ,0,,
直线MN到平面BDE的距离:
.
Ⅲ平面BDE的法向量0,,
平面DEP的法向量0,,
设二面角的大小为,
则.
.
二面角的大小为.
科目:高中数学 来源: 题型:
【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).
(1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:
方案一:全场商品打8.5折;
方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,PA⊥平面ABCD,CD⊥AD,BC∥AD,.
(Ⅰ)求证:CD⊥PD;
(Ⅱ)求证:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.
(1)列出甲、乙两种产品满足的关系式,并画出相应的平面区域;
(2)在一个生产周期内该企业生产甲、乙两种产品各多少吨时可获得利润最大,最大利润是多少?
(用线性规划求解要画出规范的图形及具体的解答过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线:和圆:,给出下列说法:①直线和圆不可能相切;②当时,直线平分圆的面积;③若直线截圆所得的弦长最短,则;④对于任意的实数,有且只有两个的取值,使直线截圆所得的弦长为.其中正确的说法个数是( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求BE与平面PAC所成的角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com