精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,底面ABCDE分别为棱PAPC的中点,M是线段AD的中点,N是线段BC的中点,

求证:平面BDE

求直线MN到平面BDE的距离;

求二面角的大小.

【答案】见解析;

【解析】

A为原点,ABx轴,ACy轴,APz轴,建立空间直角坐标系,利用向量法能证明平面BDE

求出0,利用向量法得直线MN到平面BDE的距离

求出平面BDE的法向量和平面DEP的法向量,利用向量法能求出二面角的大小.

在三棱锥中,底面ABCDE分别为棱PAPC的中点,

M是线段AD的中点,N是线段BC的中点,

A为原点,ABx轴,ACy轴,APz轴,

建立空间直角坐标系,

004

200

2

20

2

设平面BDE的法向量y

,取,得0

平面BDE

平面BDE

0

直线MN到平面BDE的距离:

平面BDE的法向量0

平面DEP的法向量0

设二面角的大小为

二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).

1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;

2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:

方案一:全场商品打8.5折;

方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为.

1)求椭圆的方程;

2)直线过椭圆的左焦点,且与椭圆交于两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,PA⊥平面ABCDCDADBCAD.

(Ⅰ)求证:CDPD

(Ⅱ)求证:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且2的等差中项.数列中,,点在直线上.

1)求的值;

2)求数列的通项公式;

3)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;

2)求频率分布直方图中的ab的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.

1)列出甲、乙两种产品满足的关系式,并画出相应的平面区域;

2)在一个生产周期内该企业生产甲、乙两种产品各多少吨时可获得利润最大,最大利润是多少?

(用线性规划求解要画出规范的图形及具体的解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线和圆,给出下列说法:①直线和圆不可能相切;②当时,直线平分圆的面积;③若直线截圆所得的弦长最短,则;④对于任意的实数,有且只有两个的取值,使直线截圆所得的弦长为.其中正确的说法个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,底面ABCD是菱形,∠BAD60°ABPA2PA⊥平面ABCDEPC的中点,FAB的中点.

1)求证:BE∥平面PDF

2)求证:平面PDF⊥平面PAB

3)求BE与平面PAC所成的角.

查看答案和解析>>

同步练习册答案